
https://aspai-conference.com/


 

 
 
 
 
 
 

Advances in Signal Processing  
and Artificial Intelligence: 

 

Proceedings of the 7th International Conference  
on Advances in Signal Processing  

and Artificial Intelligence 
 

 
8-10 April 2025 

Innsbruck, Austria 
 
 
 

Edited by Sergey Y. Yurish 
 
 
 
 
 
 
 
 
 
 
 
 

 
  



Sergey Y. Yurish, Editor 
Advances in Signal Processing and Artificial Intelligence 
ASPAI’ 2025 Conference Proceedings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © 2025  
by International Frequency Sensor Association (IFSA) Publishing, S. L. 

E-mail (for orders and customer service enquires): ifsa.books@sensorsportal.com 

Visit our Home Page on http://www.sensorsportal.com 

All rights reserved. This work may not be translated or copied in whole or in part without the written permission 
of the publisher (IFSA Publishing, S. L., Barcelona, Spain). 

Neither the authors nor International Frequency Sensor Association Publishing accept any responsibility or 
liability for loss or damage occasioned to any person or property through using the material, instructions, methods 
or ideas contained herein, or acting or refraining from acting as a result of such use. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identifies as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary 
rights. 

 
ISBN: 978-84-09-71189-5 
BN-20250405-XX 
BIC: UYQ 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

3 

 
Contents 

 
 
 
 

Foreword ........................................................................................................................................................... 6 
 
Compact Dual-band Millimeter Wave Antenna at Ka- and V-band  for Sensing Applications ................ 7 

Parveez Shariff B. G., Tanweer Ali, Sameena Pathan and Pallavi R. Mane  
Kidney Tumor Segmentation Using Improved U-Net Architecture  for Early Diagnosis  
of Renal Cell Carcinoma .................................................................................................................................. 9 

Sameena Pathan, Tanweer Ali and Haneena Hyder  
Smart Sensor Selection: A Review on Metaheuristic Algorithms  in IoT Platforms ................................ 13 

Sujith Kumar, Shweta Vincent and Om Prakash Kumar  
Soft Computing for Flood Susceptibility Mapping of Kullu District of India ........................................... 19 

Shweta Vincent, Mahesh Anil Inamdar, Om Prakash Kumar, Rohit Narayan H S,  
Nakul Rajendra Varma, Kaushik Naidu and Anadya Dang  

Rényi Entropy-based Shrinkage Algorithm for Sparse Time-frequency Distribution  
Reconstruction Using Component Alignment Map ..................................................................................... 24 

V. Jurdana 
Applied AI for DLT and CLT with Imperfect Bonding .............................................................................. 30 

R. Hussein 
Removing EOG Artifacts from EEG Recordings Using Deep Learning ................................................... 38 

C. O’Reilly - and S. Huberty 

GNSS Non-Line-of-Sight (NLOS) Error Repairing in Challenging Urban Environments  
with Channel Attention and Inception-based Deep  Learning Network .................................................... 45 

Zhiqiang Wang, Ni Zhu and Ruiwen He  
Diagnosing Plant Leaf Disease with THz Sensor and Digital  Signal Processing ...................................... 50 

Janez Trontelj, Andrej Švigelj and Janez ml. Trontelj 
Monitoring OoD Prediction Error in Semantic Segmentation Networks  via Temporal  
Consistency of Logits ...................................................................................................................................... 53 

Youssef Shoeb, Azarm Nowzad and Hanno Gottschalk  
Examining Physiological Responses to Misophonic Triggers ..................................................................... 56 

C. O’Reilly -, X. Yang, S. Oh, D. Wedell, and S. V. Shinkareva 

Comparative Study of Route Algorithms Applied to Drones ..................................................................... 62 
Jezabel Molina-Gil, Ricardo Aguasca-Colomo and José Gregorio Dorta-Luis  

CFUs Detection in Petri Dish Images Using YOLOv12 ............................................................................... 66 
V. Quevit, J.-L. Dillenseger, J.-M. Laferté, A.-J. Fougères, H. Djelal and E. Jalenques  

A Reliable and Efficient Detection Pipeline  for Rodent Ultrasonic Vocalizations ................................... 72 
S. S. Anis -, D. M. Kellis, K. F. Kaigler, M. A. Wilson, and C. O’Reilly - 

Functional Connectivity Analysis Using Adaptive Window Size  and Intersection  
of Confidence Intervals .................................................................................................................................. 79 

Z. Šverko, S. Vlahinić, N. Stojković and P. Rogelj  
Chart Pattern Recognition Using Convolutional Neural Networks ........................................................... 83 

C. Caballero-Gil, J. A. Antúnez-Pulido, J. Giner-Rubio  
Prediction of Total Daily Diaper Changes Based on Infants’ Bowel Sounds during  
the Beginning of Breastfeeding ...................................................................................................................... 87 

S. Mukaiyama, N. Tanabe and Y. Oka  
Deep Jansen-Rit Parameter Inference for Model-driven Analysis  of Brain Activity .............................. 92 

Deepa Tilwani, and Chrisitan O’Reilly 
Computing the Time-dependent Krankheit-operator in Epilepsy  from ECoG: a Case Study ............. 100 

M. Mannone, P. Ribino, A. Saibene, P. Fazio, S. Fazio, F. Gasparini, M. Gherardi,  
and N. Marwan 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

4 

Millimeter-wave Beam Prediction with Inverse Beamforming ML Model ............................................. 105 
S. Mokdadi, S. E. Bouzid and P. Chargé 

Video-based Analysis for Automated Ptosis Detection .............................................................................. 111 
S. Baliński, P. Śniatała 

Identification of Musical Instruments in Audios using Signal Analysis   
and Artificial Intelligence ............................................................................................................................. 115 

A. S. Vazquez-Robledo, R. A. Lizarraga-Morales, and M. Lopez-Ramirez  
Enhancing Real-time Decision-making with Scalable, Safe, and Private LLMOps  
and Context-aware RAG Workflows .......................................................................................................... 119 

Jérémie Farret, Jerin Jude and Nitish Kumar Pilla 
Self-adaptive and Self-learning Lighting System: Integrating LSTM  and RL  
for Energy Efficiency and Personalized Visual Comfort .......................................................................... 125 

G. Potenza, Cristina Baglivo, M. Bonomolo and P. Ribino  
Generation of a Rhythm Descriptor in Musical Phrases Using Signal Processing  
and Artificial Intelligence Techniques ........................................................................................................ 130 

H. A. Aguilera-Garcia, R. A. Lizarraga-Morales  
Combined Feature Selection and Hyperparameter Optimization  for Small Datasets .......................... 135 

N. L. Kämpf 

Res-Scrum: A Proactive and Resilient Agile Framework for Managing Uncertainty  
in Software Development ............................................................................................................................. 142 

Aziz Fellah 
The Role of Code Readability in Large Language Model Code Summarization .................................... 148 

B. Szalontai, G. Szalay, T. Márton, A. Sike, P. Mátray, M. I. Nagy, B. Pintér and T. Gregorics 
Traffic Predictions Using Graph Neural Networks  on Real-time Observations .................................... 155 

Joachim Hansen, Donglin Liu and Alexandros Sopasakis  
Knowledge Distillation for Efficient Algerian Dialect Processing: Training Compact  
BERT Models with DziriBERT ................................................................................................................... 161 

Laggoun Amina, Zakaria Chahnez and Smaili Kamel  
An Evaluation of General-purpose Large Language Models  for Aspect Summarization ..................... 167 

S. Frank, C. Gütl and A. Wagner  
Characteristics of Dynamic Velocity Response in Hand Movements Using Frequency  
and Time Modeling Techniques .................................................................................................................. 171 

C. L. Sandoval-Rodriguez, A. F. Jimenez-Quezada, N. Orejarena-Osorio, O. Lengerke, and D. M. Reyes-
Bravo  

Graphical User Interface for Volumetric Capnography: Parameter Estimation  
and Fowler’s Method Implementation ........................................................................................................ 176 

C. L. Sandoval-Rodriguez, N. Orejarena-Osorio, A. F. Jimenez-Quezada, and O. Lengerke  
Forecasting Flood in Vietnam Using Deep Learning ................................................................................. 180 

T. L. Nguyen, T.H. Nguyen 

Enhancing Accuracy in Non-contact Physiological Monitoring:  The Critical Role  
of Radar and Sensor Signal Alignment ....................................................................................................... 184 

Nour Ghadban, Mostafa Elsayed, Jonathan Cooper, and Julien Le Kernec 
Radial Basis Operator Networks ................................................................................................................. 189 

J. A. Kurz, S. Oughton and S. Liu  
The Protocol for Integration of Automated and Dynamic Facial Expression Emotion  
Recognition with EEG for Emotional Traits Analysis  in Pilot Candidates ............................................ 197 

S. Michalak, T. Łodygowski, P. Śniatała, M. Goralewski, E. Kozielewska-Zwierska, J. Moskal,  
M. Galant-Gołębiewska, M. Maciejewska, K. Śniatała, P. Zych  

Neurorehabilitation System Supported by Virtual Reality ....................................................................... 201 
P. Śniatała, S. Michalak, E. Kozielewska-Zwierska, A. Krawczyński, K. Śniatała, S. Baliński  

Radioactive Tabular Datasets to Detect Unauthorized Machine Learning ............................................. 206 
Mehdi Ben Ghali, Gouenou Coatrieux, and Reda Bellafqira 

 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

5 

MineralBLIP: Advancing Mineral Classification with Vision Language Pre-training Model .............. 212 
Khalid Alharthi, Ghadi Alkhushail, Sharifah Malhan, Batol Alsalkhadi, Hatun Alqarni,  
Kholoud Alharthi, Reem Almarhabi, Raghad Alharthi, Ali Alshahrani, Muhammad Zaka Emad,  
and Dhafer Alshehri  

An Improved Algorithm for Computing Matroids over Polynomials ...................................................... 218 
David W. Ash 

 
 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

6 

 
 
 
 
 

Foreword 
 
 
It is with great pleasure, enthusiasm and pride that I present the proceedings of the 7th International 
Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI’ 2025), held in the 
beautiful city of Innsbruck, Austria, from April 8 to 10, 2025. 
 
The ASPAI Conference Series has become a significant international forum for the dissemination and 
exchange of cutting-edge research in the domains of signal processing and artificial intelligence—two 
pillars of modern information and decision systems. These fields continue to evolve synergistically, 
offering transformative capabilities across critical sectors such as biomedical diagnostics, remote 
sensing, cognitive robotics, telecommunications, environmental modeling, and autonomous navigation 
systems. 
 
The proceedings compiled herein reflect the diversity and technical depth of contemporary research at 
the intersection of these domains. Each paper has been rigorously peer-reviewed and selected for its 
originality, scientific merit, and potential impact. Contributions span from advanced time-frequency 
analysis and millimeter-wave antenna design to innovations in deep neural architectures, federated 
learning systems, and intelligent optimization for Internet of Things (IoT) platforms. These works not 
only demonstrate theoretical advancements but also emphasize real-world applicability and 
scalability—highlighting the robust interplay between foundational theory and applied engineering.  
 
In an era where data volumes are exponentially increasing and computational intelligence must be both 
adaptive and interpretable, the work presented at ASPAI’ 2025 offers substantive insights into the 
design of resilient, efficient, and ethical AI-driven systems. Particular attention has been given to 
frameworks that enhance model robustness, privacy preservation, energy efficiency, and real-time 
signal interpretation—underscoring the community’s dedication to solving complex challenges under 
realistic constraints. 
 
The sustained excellence and impact of ASPAI are made possible through the committed efforts of our 
authors, the meticulous work of our reviewers, and the strategic vision of the conference organizing 
committee. I express my sincere gratitude to all contributors and collaborators who have supported this 
endeavor with their time, expertise, and academic rigor. 
 
As the Chairman of ASPAI’ 2025, I am confident that this volume will serve not only as a reference for 
current state-of-the-art methodologies but also as a catalyst for new ideas, collaborations and novel 
research trajectories. I encourage readers to engage deeply with the material and to explore 
interdisciplinary synergies that drive innovation at the nexus of signal processing and artificial 
intelligence. 
 
I extend my sincere thanks to all the authors, reviewers, organizing committee members, and sponsors 
who have contributed to the success of this conference. Your dedication and hard work are deeply 
appreciated. 
 
 
 
Prof., Dr. Sergey Y. Yurish 
ASPAI’ 2025 Conference Chairman 
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Summary: With technological advancement, devices are becoming intelligent with many sensors onboard. The sensors push 
Gbps of data on the internet every day. The current sub-6 GHz frequency band has reached saturation due to bandwidth 
constraints. As a result, a millimeter wave (mmWave) spectrum with licensed and unlicensed bands is exposed to various 
applications. Thus, the article presents a compact with a small form factor of 0.66ߣଵ ×  ଵ, having dual-band resonanceߣ0.64
and operating in Ka and V-band. The antenna achieved a fractional bandwidth of 200 % at both bands with a maximum gain 
of 6 dBi. Thus, the proposed antenna is suitable for sensing applications due to its compact structure at the mmWave spectrum. 
 
Keywords: 5G, Ka-band, Millimeter wave antenna, V-band. 
 

 
1. Introduction 
 

The number of smart devices around us is rapidly 
increasing and is expected to reach 25.44 billion by 
2030. These devices demand continuous connectivity 
to the external world, pushing out Gbps of data every 
day. Most of these devices are connected to 
multimedia, vehicular communication (V2V and 
V2X), payment terminals, tracking and monitoring 
stations, inventory management devices, etc. The 
International Telecommunication Union (ITU) has 
opened the higher millimeter wave (mmWave) 
spectrum from Ka- to E-band to accommodate 
substantial data requirements [1], increasing the 
bandwidth to 10-fold. 

The mmWave spectrum is primarily studied for 
communication; however, its potential is later explored 
in sensing applications, such as on-body health 
monitoring, driver alertness, in-door movement 
monitoring, an inspection of building cracks, etc. [2]. 
The transducer for sensing applications must be 
compact to embed in compact devices. Thus, an 
antenna characterized as transducer is presented in this 
article. For example, in [3], a compact dual-band 
antenna for on-body application is proposed. The first 
band is 34 GHz, and the second is 60 GHz. However, 
it resulted in a narrow bandwidth. In [4], the gain of an 
antenna at 60 GHz is increased by arranging the 
radiating elements in an array fashion. The design 
adopts the substrate-integrated waveguide (SIW) feed 
mechanism, making it complex in fabrication. Further, 
to simplify the complexity, in [5], a planar antenna is 
designed to resonate at three bands, possessing decent 
bandwidth at least in two bands. The design adopted a 
co-planar waveguide structure for design simplicity. 

 

2. Antenna Design 
 

In contrast to the above literature, this article 
presents a planar compact dual-band antenna operating 
in Ka and V-band, as shown in Fig. 1, for mmWave 
sensing applications. 

 

 
(a) 

 

 
(b) 

 
Fig. 1. Proposed antenna design with top view  

in (a) and bottom view in (b). 
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The internal dimension of the antenna is presented 
in Table 1. The design is etched on Roggers 5880 
substrate, which has a thickness of 0.254 mm. The 
antenna profile is 0.66ߣଵ ×  ଵ isߣ ଵ (whereߣ0.64
wavelength at 38 GHz). The radiator has two elliptical 
rings interconnected by vertical stubs. From the 
internal ring, a microstrip line connects the two open-
ended monopole-like structures responsible for 
generating dual resonance. However, the bandwidth at 
these bands was narrow; as a result, the ground plane 
is defected to improve the bandwidth. The resulting 
reflection coefficient is illustrated in Fig. 2. 

 
 

Table 1. Antenna dimensions in mm. 
 

Parameter Value Parameter Value Parameter Value
FL 0.95 FW 0.25 E1L 4 

E1H  1.6 E2L 2.72 E2H 1.31 
E3L 2.1 E3H 1 E4L 1.82 
E4H 0.6 T1 1.25 D1  2 
D2 2.74 S1 1.4 S2 1 
S3 2.5 S4 .4 S5 1.4 
S6 1.85 S7 1.2 S8 1 

 

 
 

Fig. 2. Simulated reflection coefficient  
of the proposed antenna. 

 

The designed antenna achieved a bandwidth range 
of 34.3-42.5 GHz and 49.4-53.3 GHz. Thus, at both 
bands, the fractional bandwidth is 200 %. The antenna 
has bi-directional radiation characteristics in the  
E-plane and H-plane at 38 and 52 GHz, with a 
maximum gain of 5.2 and 6 dBi, respectively, as shown 
in Fig. 3. 
 
 
3. Conclusion 
 

The article presented a compact 0.66ߣଵ ×  ଵߣ0.64
antenna with dual-band resonance in Ka and V-band 
with 200 % fractional bandwidth. The antenna has gain 
of 6 dBi and suitable for mmWave sensing 
applications. 

 
(a) 

 

 
(b) 

 
Fig. 3. Simulated radiation characteristics at 38 and 52 GHz 

in (a) E-plane and (b) H-plane. 
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Summary: The Kidneys are vital organs that remove waste products and excess fluid from the circulation, which is crucial 
for preserving health. Renal Cell Carcinoma (RCC), sometimes known as kidney cancer, is the most frequent type of adult 
cancer, accounting for 3-4 % of cases. Particularly in males over 64, a large number of cases are asymptomatic and 
inadvertently discovered. Smoking, obesity, and a bad diet are risk factors, and the chances of survival differ greatly depending 
on the stage. The most important diagnostic methods are CT and MRI, and early detection is essential. Techniques for 
segmenting images improve analysis by concentrating on particular regions. The accuracy of kidney tumor segmentation and 
diagnosis has improved recently due to developments in deep learning and automated analysis, particularly with Convolutional 
Neural Networks (CNNs). This aids in the more precise pathology diagnosis made by doctors. 
 
Keywords: Kidney tumor segmentation, Deep learning, U-Net, KiTS19 dataset, Medical imaging. 

 
 
1. Introduction 
 

Kidneys are essential organs responsible for 
filtering waste products and excess fluids from the 
blood, playing a critical role in regulating electrolyte 
balance, blood pressure, and red blood cell production. 
However, they are also vulnerable to diseases such as 
kidney cancer, particularly Renal Cell Carcinoma 
(RCC), which accounts for approximately 3-4 % of 
adult cancers. RCC is notably the third most common 
urological cancer, with clear cell RCC being the most 
prevalent subtype, making up 80-90 % of cases. This 
type of cancer often develops with minimal symptoms, 
leading to many cases being detected incidentally, 
particularly in men over the age of 64. Key risk factors 
include smoking, obesity, poor dietary habits, and a 
family history of hypertension. 

Given the challenges associated with manual tumor 
segmentation, which is time-consuming and prone to 
subjectivity, this research underscores the urgent need 
for automated segmentation techniques to enhance the 
accuracy and efficiency of kidney tumor identification. 
The study aims to leverage advancements in deep 
learning and image analysis to develop robust 
algorithms capable of accurately segmenting kidney 
tumors from CT scans, followed by a size-based 
analysis for tumor staging. By comparing various 
segmentation algorithms, the research will evaluate 
their performance across different contexts and 
establish a standardized approach for automated 
classification. 

 
 

Fig. 1. CT scan of both kidneys and tumour. 
 
2. Literature Survey 
 

Kidney segmentation techniques in medical 
imaging, particularly using CT scans, have evolved 
significantly, incorporating classical image processing 
methods as well as advanced deep learning techniques. 
Kaur and Juneja [1] conducted an extensive survey 
reviewing various kidney segmentation methods, 
discussing both traditional and modern approaches, 
and identifying their advantages and limitations, such 
as dependency on manual intervention and sensitivity 
to image quality. Chow et al. [2] contributed to the 
broader understanding of renal cell carcinoma by 
identifying epidemiological risk factors, facilitating 
early detection and prevention strategies. Pan et al. [3] 
identified miR-566 as a molecular biomarker, 
highlighting its potential role as an oncogene and 
prognostic indicator in renal cell carcinoma. 
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Further advancements in deep learning techniques 
have substantially enhanced medical image 
segmentation accuracy and efficiency. Müller and 
Kramer [4] introduced MIScnn, a dedicated 
framework for efficient and precise segmentation 
using convolutional neural networks (CNNs). 
Hesamian et al. [5] reviewed the substantial 
achievements of CNNs in medical image 
segmentation, emphasizing the associated challenges 
such as computational intensity and dataset 
requirements. Zhu et al. [6] successfully demonstrated 
improvements in renal tumor segmentation accuracy 
using transfer learning with CNNs, particularly 
beneficial for small dataset scenarios. The KiTS19 
challenge dataset by Heller et al. [7] provided 
standardized, clinically annotated datasets, 
significantly propelling research in kidney tumor 
segmentation. Bolocan et al. [8] further advanced 
segmentation techniques by presenting a CNN-based 
model specifically designed for effective segmentation 
and classification of clear cell renal cell carcinoma 
using multiphase CT images. Alzu'bi et al. [9] 
introduced a new dataset focusing specifically on 
kidney tumor detection and classification using deep 
learning, expanding resources available for research. 
Additionally, Pandey and Gupta [10] demonstrated an 
effective approach to tumorous kidney segmentation 
using active contour methods integrated with 3D-UNet 
models, further advancing segmentation capabilities in 
medical imaging. 
 
 
2. Methodology 
 

The methodology uses techniques such as random 
cropping for dataset augmentation, resolution filtering, 
and intensity value scaling when processing CT scans. 
Techniques for augmenting data, such as rotations and 
flips, raise variability. Tumor size analysis based on 
the TN staging method comes after segmentation using 
deep learning models like U-Net and V-Net. 

 
2.1. Dataset Description 
 

The dataset consists of multi-phase CT imaging, 
i.e., it includes CT scans captured with different 
contrast agents, offering detailed information on 
various types of tissues. Each patient case includes a 
CT scan and the respective segmentation masks. These 
masks are essentially digital labels that precisely 
outline the regions of interest in the CT images. In this 
case, the masks likely depict both the kidney contours 
and the tumor boundaries. The dataset also includes 
comprehensive clinical outcomes for the 210 patients. 
The CT scans and segmentation masks are provided in 
the anonymized NIFTI format. This is a common file 
format in medical imaging tasks as it is suitable for 
storing volumetric data like 3D medical images. The 
NIFTI format typically uses a shape representation of 
(num_slices, height, width) [7]. This indicates that the 
data is organized as a 3D volume, with each entry 
representing: 

• num_slices: The total number of individual CT 
slices in the scan; 

• height: The number of pixels in the vertical 
direction (rows) of each slice; 

• width: The number of pixels in the horizontal 
direction (columns) of each slice. 

 
 
2.2. Data Processing 
 

The dataset underwent formatting and cleaning, 
including size-based inclusion step to filter data points. 
Min-Max scaling was applied for standardization, and 
data augmentation techniques were used to enhance 
the dataset. This workflow is depicted in Fig. 2. The 
model finds it challenging to learn efficiently as a 
result. The CT images intensity values were scaled to 
a specific range (between -57 and 164 based on the 
code) for better model convergence during training 
using min-max scaling method, where x is the intensity 
value, x.min() is the minimum intensity value, x.max() 
is the maximum intensity value and x’ is the scaled 
intensity value as given in (1) 

 
 (1) (() min.ݔ−() max.ݔ)÷(() min.ݔ−ݔ ) = ′ݔ 

 

 
 

Fig. 2. Flowchart describing the sequential process  
in the study. 

 
Random Cropping: This technique helps to an 

increase the dataset size and improve model 
generalizability by exposing it to various  
image excerpts. 
 
2.3. Data Augmentation 
 

The code introduced random flips (along 
horizontal, vertical, and depth axes) and rotations (up 
to 90 degrees) during data augmentation. Random 
Flips is the process of flipping the image along 
horizontal, vertical, and depth axes essentially creates 
mirrored versions of the original image. This exposes 
the model to how the kidney and tumor might appear 
if viewed from a different perspective. Random 
Rotations rotates the image by up to 90 degrees 
simulates potential variations in how the patient was 
positioned during the CT scan acquisition. This helps 
the model learn features that are rotation-invariant, 
allowing it to accurately segment the kidney and tumor 
regardless of their in-plane orientation within  
the image. 
 
2.4. Segmentation 
 

The processed data was split into training, 
validation, and testing sets. Various segmentation 
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algorithms, such as U-Net, were applied to accurately 
delineate tumor boundaries. 
 
2.4.1. U-Net 
 

U-Net is widely known for its effectiveness in 
medical segmentation. Its strength lies in the skip 
connections that transfer spatial information directly 
from the encoder to the decoder as given in Fig. 3 and 
4. The performance of the U-Net across 100 training 
epochs, measured by Dice loss and IOU score. 
 

 
 

Fig. 3. U-Net loss. 
 

 
 

Fig. 4. Encoder Architecture. 
 
2.4.2. V-Net 
 

V-Net is designed specifically for 3D medical 
image segmentation and builds upon U-Net’s structure 
with some key enhancements. The performance of the 
V-Net across 100 training epochs, measured by Dice 
loss and IOU score. 
 
2.4.3. Attention U-Net 
 

Attention U-Net adds an attention mechanism to 
the traditional U-Net to help the model focus on more 
relevant regions within the image. 
 
2.4.4. Autoencoder 
 

Autoencoders can also be adapted for segmentation 
by learning compact representations of the input and 
reconstructing the segmentation mask from  
these features. 

 
2.4.5. Shared Design Principles 
 

While each model has its own architectural 
nuances, they follow a similar high-level process: 

1. Downsample the input to extract deep features 
(Encoder); 

2. Process or refine those features using dense 
layers, attention, or bottlenecks; 

3. Upsample and combine with earlier features for 
detailed reconstruction (Decoder); 

4. Generate a segmentation mask through a final 
output layer. 

 
3. Results 
 
3.1. Performance Metrics 
 

In our research investigation, we employed the 
segmentation algorithms U-Net, V-Net, Attention  
U-Net, and Auto Encoder. The CT scan patch image, 
the label (ground truth), and the tumor class prediction 
are all included in the outcome. It evaluates the degree 
to which the model has correctly recognized the tumor 
by contrasting the prediction with the label (ground 
truth). The tumor pixels are then identified using the 
matching label and prediction masks, and the size of 
the label tumor and the predicted tumor are computed 
by iterating through each patch. The tumor's overall 
size in each patch is then calculated by adding up all of 
the tumor's pixels, and the TNM staging system is used 
to categorize the tumor into various stages. 

The performance of the segmentation models was 
evaluated using established metrics, as shown in  
Table 1. The analysis provided insights into the 
strengths and weakness of each algorithm, guiding 
future improvements. 
 

Table 1. Results of segmentation algorithms. 
 

Segmentation 
algorithm 

Dice 
Score 

Dice 
Loss 

IOU 
Score 

Auto Encoder 0.82 0.17 0.69 
V-Net 0.96 0.03 0.92 
U-Net 0.97 0.02 0.95 

Attention U-Net 0.98 0.01 0.96 
 

The strongest model, Attention U-Net, obtained an 
IOU score of 0.9654 and a Dice score of 0.9824 when 
evaluated on unseen test data. The tumor prediction 
made by the model based on the test data is shown  
in Fig. 5. 
 
3.2. Result Analysis 
 

From the above dice scores and IOU score we can 
compare and obtain that the Attention U-Net model 
performs best on the dataset. 

After the predictions were obtained, the tumor size 
of the label was measured along with the tumor size of 
the predicted model and compared and put into 
different stages according to the TNM classification. 
 
3. Conclusion 
 

The study effectively illustrates the use of deep 
learning methods for comparative size analysis and 
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automated kidney tumor segmentation in kidney 
cancer staging. Tumor boundaries are essential for 
proper diagnosis and treatment planning. The research 
significantly improved tumor boundary delineation by 
utilizing the KiTS19 dataset and sophisticated 
segmentation algorithms such as U-Net and Attention 
U-Net. Subsequent research endeavors may 
concentrate on optimizing these models, investigating 
supplementary data sources, and including clinical 
characteristics to augment the resilience and suitability 
of the segmentation techniques in actual  
medical contexts. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 5. Comparison of (a) Dice Score (b) Dice Loss  

and (c) IOU Score of different algorithms. 
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Summary: Despite tremendous advances, existing techniques to sensor selection in Internet of Things (IoT) systems confront 
numerous obstacles. Multi-objective evolutionary algorithms, such as MOEA/D and NSGA-III, excel in solving complicated 
problems with numerous objectives. Evolutionary algorithms improve solution quality, but they have limitations due to 
parameter biases and constrained applicability. Improving energy optimization algorithms can increase resource efficiency and 
network lifespan, but scaling and executing them in real-world circumstances presents considerable obstacles. Sampling and 
visualization approaches provide useful insights, albeit with limitations such as data loss and the presumption of uniform 
solution distribution. 
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1. Introduction 
 

Multi-objective evolutionary algorithms, or 
MOEAs, are a key feature of evolutionary computing 
that has piqued the interest of both scholars and 
practitioners. 

 
 

1.1. Introduction to Multi-objective Optimization 
 
Over the last two decades, tremendous progress has 

been made in developing algorithms capable of 
handling optimization. Difficulties can arise during 
complex decision-making processes in a variety of 
fields, including engineering, finance, healthcare,  
and others. 

 
 

1.2. Domains of Multi-objective Optimization 
 

Decision-makers must strike a balance between 
competing demands such as resource allocation, 
system efficacy, and cost efficiency in some sectors 
where critical decision making is required.  
Multi-Objective Evolutionary Algorithms (MOEAs) 
seek to address these difficulties by combining 
computational intelligence and natural evolution 
principles to provide cost-effective and scalable 
solutions that achieve nearly optimal trade-offs 
between many objectives. They are widely used in a 
variety of industries, including control systems, 
renewable energy, process optimization, and structural 
design. Portfolio management demonstrates multi-
objective optimization in finance, with investors 
seeking to maximize returns while limiting risk. 
Similarly, healthcare applications such as developing 
treatment planning and allocating resources necessitate 

striking a balance between patient outcomes, resource 
utilization, and cost effectiveness. 

In addition to these applications, algorithms are 
widely used in machine learning, environmental 
management, transportation planning, and supply 
chain optimization. Their adaptability is critical for 
resolving the ever-increasing complex and 
interconnected difficulties confronting modern 
decision-makers. 

 
 

1.3. Sensor Placement in IoT Using  
      Multi-objective Optimization 

 
The complexities of real-world scenarios highlight 

the importance of efficient optimization approaches in 
the current context. One of the primary issues in the 
world of the Internet of Things (IoT) is the accurate 
location of sensors in order to improve coverage, speed 
data collecting, and ensure the system's smooth 
operation. The primary goal is typically to ensure that 
the region or environment where IoT data must be 
collected is sufficiently covered such as temperature, 
humidity, and motion, as well as their geographical 
and temporal precision, as well as any limitations on 
data quality and dependability. The physical 
environment is one of the elements that influence 
sensor positioning. Sensor placement must be carefully 
considered in order to reduce signal disruption and 
provide dependable network communication. It may 
be important to install battery-powered sensors in 
locations where they can be quickly replaced or 
recharged. Automatic optimization algorithms, such as 
heuristic and metaheuristic techniques, can assist in 
automating and improving sensor site selection. These 
algorithms use characteristics such as coverage, 
connectivity, and energy efficiency to find the most 
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ideal or near-optimal solutions. Modeling and 
simulation techniques are effective for forecasting the 
efficacy of various sensor placements before they are 
implemented. 
 
 
1.4. Motive 
 

1. Precision of Data: Sensors are strategically 
placed to ensure a continual stream of reliable data. In 
environmental monitoring, correct sensor placement is 
critical for reliably assessing contaminant levels. 

2. Cost effectiveness: Because of the large number 
of sensors used in IoT systems, cost-effectiveness is 
frequently a critical consideration. By carefully 
selecting appropriate places, it is feasible to reduce the 
number of sensors required. 

3. Energy Efficiency: Many IoT devices rely on 
low-power sources or batteries, thus energy economy 
is an important consideration. Inadequately located 
sensors may cause faster battery drain resulting in 
higher operational costs and increased maintenance 
requirements. 

4. Network capacity: The network capacity 
required to transfer data from sensors to the central 
processor is critical. Sensors can be strategically 
placed to reduce superfluous data transfers, alleviate 
network congestion in large-scale IoT systems, and 
ensure that only critical data is transferred. 

5. Robustness and Reliability: The IoT system's 
robustness and dependability improve when 
strategically placed sensors are used. They outperform 
other elements in the environment in terms of their 
ability to tolerate difficult situations, interruptions, and 
impediments. When sensors are properly located, the 
likelihood of sensor malfunction and data loss due to 
external influences is reduced. 

6. Security and Privacy Concerns: Incorrectly 
configured sensors have the possibility to accidently 
collect personal information or violate privacy 
standards. Strategic sensor placement is critical for 
reducing the possibility of breaches and ensuring 
compliance with security and privacy requirements. 

7. Scalability and Flexibility: Strategic sensor 
placement increases the scalability and flexibility of 
IoT systems. A carefully designed placement strategy 
allows for smooth development or adjustment without 
requiring extensive redesign as the system evolves or 
its requirements change. 

Finally, carefully selecting sensor placements in 
Internet of Things (IoT) systems is crucial 
 
 
1.5. Methodology Implementation 

 
This review employs a novel approach by carefully 

evaluating and contrasting several multi-objective and 
multi-objective evolutionary algorithms. The purpose 
is to provide a thorough understanding of sophisticated 
methodology and their applications to complex 
optimization problems by organizing the analysis 
around key concepts, approaches, and empirical 

findings. The expected conclusions of this review will 
be immensely beneficial to scholars, practitioners, and 
decision-makers interested in multi-objective 
optimization. The review's purpose is to foster 
information interchange, encourage multidisciplinary 
teamwork, and ignite innovative approaches to 
addressing complicated optimization issues across 
disciplines by incorporating insights from  
many sources. 
 
 
2. Problem Definition 
 

This study focuses on solving key issues and gaps 
in the field of multi-objective algorithms for sensor 
selection in IoT systems. The difficulties originate 
from the complex nature while optimizing systems. By 
addressing these challenges, the initiative hopes to 
demonstrate the significance and relevance of its 
objectives. 

Traditional single-objective optimization 
approaches frequently fail when dealing with complex 
real-world circumstances. The research focuses on a 
fundamental issue such as the inadequate assessment 
of the strengths and limits of current algorithms for 
sensor selection in IoT applications. Although many 
algorithms have been created over the years, without 
an extensive study, the actual application and 
improvement of these algorithms are restricted. 
 
 
3. Objectives 
 

The study's primary purpose is to create, analyze, 
implement, validate, and disseminate improved sensor 
selection optimization methods for IoT systems. 
Examine the existing multi-objective design 
methodologies for choosing IoT sensors, to determine 
how effectively the algorithm performs and record the 
findings in a review article to share. 
 
 
4. Theoretical Background 
 
4.1. Evolutionary Algorithm for Multiobjective  
       Optimization 
 

Evolutionary algorithms (EAs) are optimization 
methods inspired by natural evolution. They iteratively 
create new solutions by applying selection, iteration, 
and transformation operators to a pool of candidate 
solutions. Multi-objective and multi-objective 
optimization problems necessitate the simultaneous 
optimization of several conflicting objectives, making 
traditional single-objective optimization 
methodologies inefficient. Evolutionary algorithms, 
particularly multi-objective evolution algorithms 
(MOEA) and multi-objective evolution algorithms 
(MaOEA), have developed as viable strategies for 
dealing with such complex optimization problems. 
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4.1.1. Multi-objective Evolutionary Algorithms  
          (MOEA) 
 

The goal of MOEAs is to identify a set of  
Pareto-optimal solutions that reflect the trade-offs 
between competing goals. Popular MOEAs include the 
Non-Dominated Sorting Genetic Algorithm-II 
(NSGA-II), Strength Pareto Evolutionary Algorithm 
(SPEA), and Decomposition-Based Multi-Objective 
Evolutionary Algorithm. These algorithms preserve a 
varied range of non-dominated solutions, encouraging 
research and application of the Pareto frontier. 

 
 

4.1.2. Many-objective Evolutionary Algorithms  
          (MaOEA) 
 

Multi-Objective Evolutionary Algorithms 
(MOEAs) enable the solution of optimization 
problems involving several objectives, often more than 
three. Several solutions have been proposed to address 
multi-objective optimization difficulties, including 
NSGA-III, MOEA/D with increased decomposition, 
and indicator-based evolutionary algorithms.  
Multi-Objective Evolutionary Algorithms (MOEAs) 
seek to support a wide range of decentralized solutions 
throughout the whole Pareto front, assuring the most 
efficient use of computational resources. 
 
 
4.1.3. Opposition Based Learning (OBL) 
 

Opposition-based learning (OBL) is a heuristic 
problem-solving approach inspired by the concept of 
oppositions. The Optimization by Learning approach 
pairs each solution with its complementary counterpart 
within the search space, allowing for a comparison of 
their performances to determine which is best. OBL is 
used in evolutionary algorithms to increase the quality 
of solutions, expedite convergence, and preserve 
diversity. 
 
 
4.2. Mathematical Formulation 
 

The simplest and most generic equation utilized in 
the optimization techniques is as follows. 

Minimize the solution in a region (R), 
 

 (1) ,(࢞)ࢌ,…,(࢞)ࢌ,(࢞)ࢌ) = (࢞)ࡲ 
 

where x are the variable vectors and ݔ ∈ ܴ,  F(x) is the 
Objective function, fi is the ith objective, i = 1,2,3,…n, 
is the Region defined in the problem. 

Typically, the theoretical framework provides a 
solid foundation for understanding the essential 
concepts, techniques, and mathematical models of 
multi- and multi-objective optimization. These notions 
serve as the foundation for the creation and testing of 
optimization strategies for sensor selection in  
IoT systems. 

5. Methodology 
 
5.1. Literature Review Methodology 
 

The approach used in this research involved a 
comprehensive and detailed review. 

The approach used is described in stages: 
1. To identify base and supplemental papers: 

An extensive search was conducted on 
academic databases such as IEEE Xplore, ACM 
Digital Library, ScienceDirect, and Google 
Scholar using relevant keywords; 

2. Data extraction and synthesis: Obtaining 
relevant material from selected papers, 
including algorithm descriptions and main 
conclusions; 

3. Assessment of Quality: The publications 
included in the review were evaluated for 
quality in terms of trial design, methodological 
clarity, result interpretation, and  
citation impact. 

 
 
5.2. Result Analysis 
 

The preliminary data analysis provides a 
comprehensive summary of the key findings and 
trends identified in the selected literature. This work 
adds value by finding parallels, contrasts, and potential 
for improvement in current multi- and multi-objective 
optimization methods, allowing for more in-depth 
analysis and debate in the next sections of the  
review paper. 
 
 
6. Literature Review 
 

Lin et al. 2017, presented a multi-objective 
technique for optimizing sensor selection in IoT 
systems. The study examined a range of  
multi-objective algorithms on diverse datasets with 
varying sensor and component counts. Despite 
considerable progress, the proposed approach is still 
constrained by scale issues. The literature analysis 
indicates the study's shortcomings, particularly in 
information coverage, energy consumption, and 
network lifetime. The examination of IoT sensor 
selection methods across different datasets found a mix 
of convergence and variation, such as  
hypervolume [1]. 

The data offered contains both actual sensor data 
and carefully designed produced data. They have 
applications in a variety of disciplines, including 
environmental monitoring and control. While many 
utility-based sensor selection approaches are NP-hard, 
optimizing certain features can be done effectively. 
Although this strategy produces positive results, it is 
restricted by limitations such as high processing costs, 
a limited utility function. More study is needed to 
address these issues, and researching optimization 
methodologies. Improvements in these areas will 
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increase the practicality and efficiency of picking 
sensors based on utility [2]. 

Sensor selection approaches improve sensor 
performance by combining binary and continuous data 
into a chromosome for optimization. The efficiency of 
these strategies is evaluated in simulated environments 
using datasets that include sensor features, network 
structure details, and varied spatial layouts, as well as 
changing densities and ambient elements. Genetic 
algorithms using a combination of genetic material are 
used to improve a set of sensors in wireless sensor 
networks by taking into account their fitness ratings 
and the number of nodes. Nonetheless, dealing with 
varied node designs and population dynamics offers 
new issues that must be investigated and proven in 
real-world circumstances. Using various selection 
procedures has the potential to increase the 
adaptability of sensor choosing algorithms [3]. 

Recent breakthroughs in multi-objective 
evolutionary algorithms have led to the development 
of MOEA/D. This method entails splitting down issues 
into scalar optimization subproblems. To address 
scalability and diverse scaling goals, many 
decomposition methods are being studied, including 
weighted sum. MOEA/D surpasses other algorithms, 
such as MOGLS and NSGA-II, in terms of computing 
complexity and solution quality, yielding equally 
dispersed Pareto optimum solutions. Furthermore, 
more research is needed to acquire a thorough 
understanding of the scalability and sensitivity in 
respect to neighborhood size [4]. 

The NSGA-III algorithm uses a benchmark 
technique, has recently gained attention as a feasible 
option. When it comes to convergence and diversity, 
NSGA-III regularly outperforms MOEA/D algorithms 
on DTLZ test problems with diverse aims. The study 
could benefit from more in-depth evaluations when 
compared to other complex algorithms. Despite these 
constraints, NSGA-III excels at tackling optimization 
problems many objectives while ensuring variety and 
convergence across several test cases. More research is 
needed to establish its applicability in real-world [5]. 

The paper emphasizes the versatility and efficacy 
of multi-population techniques in tackling real-world 
optimization difficulties such as scheduling, path 
planning, network optimization, and parameter 
estimation. The work addresses persistent issues such 
as scalability, processing efficiency, parameter 
sensitivity, and convergence. It is critical to address 
these limitations in optimization and design 
applications [6]. 

The authors of [7], created a mechanism for 
mapping energy-sensitive locations and selecting 
sensors. This strategy intends to improve sensor 
deployment by assigning sensors for energy efficiency 
and dynamically modifying task duration to reduce 
energy consumption. While the method has not been 
confirmed by simulations, it does show promise for 
improving energy efficiency. Despite the issues, author 
emphasizes the importance of future research and 
development efforts. 

Yu et al. (2014) offer a Quality of Service  
(QoS)-based technique for improving sensor selection. 
They consider sensor durability, battery utilization, 
and data transmission quality. The researchers 
compared the efficiency of an ILP-based matching 
service technique and a greedy matching algorithm for 
IoT devices that used synthetic materials. The findings 
showed that, while ILP improved QoS adaption, it 
required more computing work, resulting in the 
development of more efficient greedy algorithms. The 
study's findings highlight the difficult balance between 
solution efficacy and computational efficiency in the 
integration of IoT services [8]. 

Research on wireless sensor networks has been 
done by Calvo-Fullana et al. A MILP-based sensor 
selection method that takes energy harvesting and 
signal quality into account was presented in 2016. In 
more than 40 % of sensors, the EH-aware method 
achieved better reconstruction distortion than  
EH-agnostic methods. However, the use of fictitious 
datasets and strict assumptions limits the practical 
usefulness [9]. 

Xu et al. concentrate on optimal placement and 
scenario-based selection. A technique for choosing 
energy-efficient sensors in medical footwear was 
created in 2015. Although it successfully reduces 
energy usage, its applicability is limited by the absence 
of real-world proof. To improve feasibility, more 
research is required [10]. 

Lin and associates presented a multi-criteria 
method for choosing Internet of Things sensors. In 
2017, the emphasis was on improving service quality, 
protecting the environment, and increasing energy 
efficiency. Although simulations demonstrated 
effective optimisation strategies, oversimplification 
assumptions and inadequate validation limit the 
practical implementation. To comprehend the 
limitations in practical situations, more research is 
required [11]. 

MOEA/D-OBL's performance was greatly 
enhanced with the addition of OBL (2014) to  
multi-objective optimisation, leading to quicker 
convergence and better solution quality. More research 
is needed to address issues like parameter selection and 
processing costs in order to improve practicality and 
reliability [12]. 

Wang et al. first presented the Opposition Krill 
Herd (OKH) algorithm. In 2016, it combined 
opposition-based learning with Cauchy mutation. 
When compared to alternative methods, OKH showed 
better performance in terms of efficiency, quality, and 
convergence. It is advised to investigate scalability and 
practical implementation in further detail [13]. 

The study carried out by Feng and associates. 
OBMBO-GP, a method that successfully solved 
challenging 0-1 Knapsack Problems by combining 
opposition-based learning, monarch butterfly 
optimisation, and Gaussian perturbation, was the main 
emphasis in 2016. It outperforms seven algorithms, but 
more study is needed to expand its usefulness [14]. 
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Aziz and associates. A PSO-Voronoi method was 
put forth in 2019 to improve WSN coverage 
optimisation. In the end, it led to increased coverage 
and better efficiency while assuming consistent 
sensors and locations. To investigate adaption 
strategies and confirm their usefulness, more research 
is required [15]. 

Handy and coworkers. In 2002, deterministic 
cluster head selection was implemented to improve 
LEACH for wireless sensor networks, resulting in a  
30 % increase in network lifetime. Energy use at base 
stations was underestimated, highlighting the necessity 
for further investigation of energy-efficient gearbox 
methods [16]. 

Chen and colleagues. In 2020, a dynamic clustering 
model for VANETs was created based on connection 
predictions. It lowered latency and enhanced delivery, 
albeit only with simulated data. Future research should 
focus on scaling concerns and limitations in real-world 
contexts [17]. 

Mnasri and companions. In 2020, a hybrid IoT 
optimisation technique was created to improve 
coverage, connectivity, and endurance when 
establishing 3D networks. The constrained indoor 
compatibility emphasises the necessity for more 
validation and expansion study [18]. 

Zhang and colleagues. The year is 2020. Enhanced 
MOEA/D with an information feedback model 
(MOEA/D-IFM) has resulted in improved solution 
quality and convergence. More testing and research on 
parameter sensitivity are required to improve 
reliability. Please reword this statement more  
smoothly [19]. 

Gu and colleagues. In 2020, improvements were 
made to NSGA-III by adding IFM, resulting in 
increased variety and convergence. On the other hand, 
further research is needed due to the limited 
assessment of different methodologies and the 
requirement for scalability [20]. 

Li and colleagues did this investigation. In 2019, 
we looked at over 100 quality indicators to evaluate 
solution sets in multiobjective optimisation, focusing 
on factors such as capacity, convergence, diversity, 
and convergence-diversity. Factors such as GD and 
IGD were investigated, but the lack of an ideal 
standard made the assessment difficult. Future study 
intends to help with the selection of acceptable 
indicators and their practical use [21]. 

Rahnamayana and colleagues did this study. 
Opposition-based sampling (OBS) was launched for 
optimisation in 2012, demonstrating its superiority to 
random sampling in terms of delivering optimal 
solutions. Despite the benefits of scalability, it is 
crucial to emphasise that problems may occur due to 
the reliance on certain assumptions and the uncertainty 
associated with projecting solution distances. 
Additional research is required for practical 
application [22]. 

Li et al. Parallel coordinates were proposed in 2017 
as an effective approach for visually depicting sets of 
multi-objective solutions, which can help with 
decision-making and interpreting complex 

multidimensional data. Difficulties such as data loss 
and misinterpretation require further exploration to 
improve visualisation accuracy and user 
comprehension. Important grading criteria are 
convergence, coverage, homogeneity, and scope [23]. 
 
7. Results 
 

Although there have been significant advances, the 
approaches and algorithms presented for sensor 
selection in IoT systems still have limits, as do the 
optimization difficulties they imply. Evolutionary 
algorithms such as MOEA/D and NSGA-III have 
demonstrated exceptional performance. Nonetheless, 
practical implementation limits, processing 
complexities, and scalability concerns persist. 
However, they also raised concerns about parameter 
biases and their suitability for specific domains. 
Energy optimization approaches such as utility-based 
sensor selection and energy-efficient mapping have 
demonstrated considerable benefits in terms of energy 
usage and network lifetime. However, scalability and 
application of these solutions in real-world 
circumstances are challenging. 

Network performance and coverage efficiency 
were improved by the use of optimization and 
coverage algorithms that employed techniques such as 
PSO and dynamic clustering. Nonetheless, these 
approaches have some limitations, such as their 
unsuitability for varied sensor settings and reliance on 
simulated data. According to research, there are 
persistent challenges in assessing solution sets and 
adjusting to various scenarios within the boundaries of 
quality evaluation in multi-objective optimization and 
multi-population techniques. 

Despite the loss of information caused by lowering 
dimensionality and assuming uniformly distributed 
solutions, techniques such as opposition-based 
sampling and parallel coordinates in visualization and 
sampling provided useful insights into multi-objective 
solution sets. Overall, while these methods have 
achieved significant advances, more study is needed to 
overcome their limitations and improve their 
applicability in practical scenarios. 

 
8. Conclusions 

 
The review paper provides a complete overview of 

multi-objective evolutionary algorithms used to select 
sensor sites in IoT systems, drawing on research 
findings from a variety of domains and actual 
applications. The findings emphasized the relevance of 
improving algorithms to meet complicated 
optimization difficulties, as well as the need for 
ongoing research to remove existing barriers and 
explore into unknown territory within the field. 
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Summary: Flood susceptibility mapping is vital in mitigating flood risks and managing disaster preparedness. This article 
presents the usage of machine learning models such as Random Forest (RF), Support Vector Machine (SVM), Gradient 
Boosting, Artificial Neural Networks (ANN), K- Nearest Neighbours (KNN) and Decision Tree (DT) for classification of 
flood-prone areas of the Kullu district in India. Ten factors were used to build the flood susceptibility model: slope, elevation, 
land use-land cover, normalized differences vegetation index (NDVI), topographical wetness index (TWI), drainage density 
(DD), distance to road and river, soil type, average rainfall, and flood inventory data. The use of these machine learning models 
in mapping and assessing flood risk is examined, and recommendations for further study are made. The model's output has 
been assessed using the AUC-ROC method and it has been observed that Gradient Boosting performs the best out of all models 
with an AUC score of 0.96. 
 
Keywords: Flood susceptibility mapping (FSM), Flood conditioning factors (FCF), Flood inventory mapping (FIM), Machine 
learning, Confusion matrix. 
 

 
1. Introduction 
 

Flood susceptibility mapping is paramount for 
effective disaster risk management, particularly in 
regions like Manali, India, prone to flooding due to 
complex terrain and hydrological dynamics. While 
complete flood control remains elusive, flood 
susceptibility maps (FSMs) offer invaluable insights 
for managing pre- and post-flood scenarios amidst 
climatic and human-induced challenges. Coupled with 
the ever-growing global population, increasingly 
frequent and intense rainfall events due to climate 
change further exacerbate flood risks, potentially 
impacting millions. 

To address this critical need, this study explores the 
development of FSMs using a multi-criteria decision 
support system tailored for the Manali region of North 
East India. Leveraging machine learning, the study 
aims to enhance flood prediction accuracy and 
delineate areas susceptible to flooding. Information 
gain theory will identify critical flood conditioning 
factors to obtain a robust flood risk map. 

The research methodology involves analyzing  
geo-environmental parameters like elevation, slope, 
land use/land cover, and hydrological indices, 
integrating historical flood data to train and validate 
the FSM model. The effectiveness of the algorithms in 
generating FSMs will be rigorously evaluated using 
confusion matrix parameters and the AUC-ROC 
method. 

 
1.1. The Problem of Floods and the Objective 

 

Traditional flood susceptibility mapping in Kullu 
District relies on limited data and fails to capture the 

complex interplay of factors like urbanization, coastal 
location, and changing rainfall patterns. These 
limitations lead to inaccurate flood maps, hindering 
effective flood preparedness and risk management 
strategies. Kullu’s recent floods highlight the urgent 
need for improved flood prediction. Existing maps lack 
the necessary precision to guide targeted mitigation 
efforts. Traditional methods struggle to integrate 
diverse geospatial data (soil properties, land cover, 
drainage) and account for the dynamic nature of floods 
influenced by rainfall intensity and duration. 
Additionally, they cannot adapt to changing 
environmental conditions caused by climate change. 

The objective of our research is to leverage existing 
machine learning techniques to build a Flood 
Susceptibility Map (FSM) for Kullu. The effectiveness 
of the generate map would be determined by 
comparing it with various other maps generated by 
other machine learning algorithms. Various Flood 
Conditioning Factors (FCFs) have been considered for 
the creation of the final FSMs. 

 
 

1.2. Organization of This Article 
 

The next section of this article presents a brief 
literature review of the various techniques available for 
the creation of FSMs and their corresponding 
accuracies. The third section of our article outlines our 
general methodology and further the fourth section 
presents the results and discussion. Finally, the fifth 
section of the article concludes the article and presents 
the future scope for study. 
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2. Literature Review 
 

Floods are a major natural hazard causing 
significant loss of life and economic damage. Flood 
prediction methods are crucial for mitigating these 
impacts. This review examines the literature on flood 
risk mapping using Geographic Information Systems 
(GIS) and multi- criteria analysis. GIS plays a vital role 
in flood susceptibility mapping by enabling the 
creation and analysis of spatial data on  
flood-conditioning factors. Multi-criteria analysis 
techniques are employed to integrate these factors and 
assess flood susceptibility. The selection of appropriate 
flood-conditioning factors is crucial. Common factors 
include topography (slope, elevation), hydrology 
(drainage density, stream network), land cover, and soil 
characteristics. Studies [3, 10, 18] emphasize selecting 
factors considering the study area and availability  
of data. 

Various methods are used for flood susceptibility 
mapping. These models assess the relationship 
between individual flood- conditioning factors and 
flood occurrences. Examples include Frequency Ratio 
(FR) and Information Value (IV) models used by  
[3, 14]. These techniques, like the Analytical 
Hierarchy Process (AHP), allow for incorporating 
expert knowledge and assigning weights to different 

factors. Studies by [2, 9, 16] demonstrate this 
approach. Techniques like Support Vector Machines 
(SVM), Random Forest, and Artificial Neural 
Networks are increasingly being used for flood 
susceptibility mapping due to their ability to handle 
complex relationships between factors [6, 7, 19]. 
Integration of remote sensing data, particularly from 
Synthetic Aperture Radar (SAR), can enhance flood 
susceptibility mapping by providing information on 
water presence and inundation extent [1]. Studies are 
exploring novel approaches like a combination of 
decision table classifiers with metaheuristic algorithms 
[11] and Explainable Artificial Intelligence (XAI) 
models for improved transparency and  
interpretability [4]. 

[3, 9] emphasize the use of AHP for FSM creation. 
[14, 17] demonstrate the application of FR and other 
statistical models. Additional References: [4, 6, 7],  
[11, 15, 19] explore ML and advanced techniques for 
flood risk mapping. [5, 12] discuss the use of 
geospatial analysis and multivariate statistical 
methods. Table 1 outlines a summary of the various 
soft computing techniques used in state-of-the-art 
FSM creation. The table also showcases the 
parameters of evaluation used for the creation of the 
FSMs and their validation. 

 
 

Table 1. Literature Review. 
 

Reference No. Algorithm/ Technique used Evaluation Metrics Performance score 

[1] 

Support Vector Machine (SVM) 
Particle Swarm Optimization (PSO) 
Genetic Algorithm (GA) 
Ensemble techniques 

Confusion Matrix 
Cohen Kappa 

F1-score 
AUC-ROC 

Metric PSO SVM GA 
Accuracy 0.875 0.853 0.891 
F1 score 0.874 0.852 0.890 
Kappa 0.750 0.706 0.782 

[2] 
Weighted criteria by pair-wise 
comparison matrix in AHP 

Consistency ratio 
AUC-ROC 

CR = 0.8 
AUC = 0.711 

[3] 
Frequency ratio 
Bivariate Statistical Model 

AUC-ROC AUC = 0.916 

[4] Morphometric Analysis AUC-ROC AUC = 0.892 

[5] 
K Nearest Neighbour (KNN) 
Support Vector Machine (SVM) 
Artificial Neural Network (ANN) 

Confusion Matrix 
AUC-ROC 

Metric KNN SVM ANN 
Accuracy 0.915 0.927 0.927 

AUC 0.913 0.943 0.934 

 
 
From the review it is clear that, there are several 

authors who have explored the usage of the machine 
learning algorithms for the creation of FSMs. 
Nevertheless, our article presents the FSM creation for 
a flood-prone district of India, which is Kullu. 

 
 

3. Methodology 
 

This section outlines the methodology used for the 
creation of the FSM of Kullu. As outlined in Fig. 1, the 
Flood Inventory Map (FIM) and the Flood 
Conditioning Factors (FCF) are created in the 
following steps. 

Data is obtained from various sources of field 
study, Google Earth and USGS Earth Explorer to 
create the FIM and FCFs of Kullu district. The Landsat 
8 data with a spatial resolution of 30m has been used 

for this study. The various FCFs which have been 
generated using the ArcGIS tool and the Digital 
Elevation Model (DEM) of Kullu are, Slope, 
Elevation, Land Use Land Cover (LULC), Normalized 
Difference Vegetation Index (NDVI), Topographical 
Wetness Index (TWI), Drainage Density (DD), 
Distance to road and rive, Soil type and  
Average rainfall. 

Each of these thematic maps are overlayed one 
over the other to obtain the data points. The FIM 
contains the information of the historical floods. This 
is overlayed over the FCF maps and hence a 
comprehensive dataset for training and testing  
is obtained. 

Fig. 2, showcases the usage of these two maps i.e. 
the FIM and FCF for the final creation of the FSM. 
Figs. 3, 4, 5, and 6 describe the results obtained. 
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Fig. 1. Creation of FIM and FCF. 
 

The FIM and the FCF are given as inputs to the 
various machine learning algorithms and in turn, the 
FSM is obtained. The machine learning algorithms 
may/may not be fine-tuned for weights using 
metaheuristics (not used in our study). Once the model 

has been created, it is validated and the final  
AUC-ROC scores are generated. 

 

 
 

Fig. 2. Creation of FSM. 
 
 

 
 

Fig. 3. FCFs generated for Kullu. 
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Fig. 4. Final FSM generated for Kullu using Gradient Boosting with highest AUC score. 
 
 

 
 

Fig. 5. AUC-ROC analysis. 
 
 

 
 

Fig. 6. Comparative performance of ML algorithms. 
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4. Results and Discussion 
 

Based on the aforementioned methodology, the 
various FCFs which have been created are showcased 
in Fig. 3. The final FSM generated for the Gradient 
Boosting algorithm has been showcased in Fig. 4. The 
comparative AUC-ROC curves for the various 
machine learning algorithms are shown in Fig. 5 and 
the comparative performance scores based on the 
metrics of the confusion matrix are shown in Fig. 6. 

The AUC-ROC curve scores show that the 
Gradient Boosting algorithm outperforms all the other 
algorithms i.e. RF, SVM, ANN, KNN and DT. The 
final FSM created shows that the regions along the 
major water-ways i.e. rivers are most prone to 
flooding. 
 
 
5. Conclusion and Future Scope 
 

Floods are one of the most troubling natural 
disasters which lead to loss of life and property. It is 
extremely important that government authorities are 
able to predict floods earlier based on various factors 
in order to minimize the risk to life and property. One 
such technique is to create FSMs for a region based on 
pre-conditioning factors, i.e. FCFs. This article 
presented the usage of machine learning techniques for 
the creation of an FSM for the Kullu district of India. 

It was observed, that the Gradient Boosting 
algorithm was able to generate the FSM with the 
highest AUC score of 0.96. Though all other 
algorithms performed almost at par with the Gradient 
Boosting algorithm, they are not considered in detail as 
the spatial resolution of the maps is 30 m, which means 
that a very high accuracy of the FSM would lead to 
maximum safety. 

In the future, this research will be fine-tuned using 
metaheuristic algorithms to tune the classification 
weights of the algorithms, and further refine the 
accuracy of the maps. 
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Summary: Time-frequency distributions (TFDs) are powerful tools for analyzing non-stationary signals, providing insightful 
representations of their time-varying spectral content. Compressive sensing (CS) has emerged as an advanced technique in this 
field, enabling the reconstruction of TFDs from sparse ambiguity function samples. Despite its high performance, a key 
challenge lies in selecting the optimal regularization parameter. A Rényi entropy-based shrinkage algorithm was proposed to 
address this, utilizing the local Rényi entropy (LRE) and estimated local component counts to achieve more interpretable and 
accurate TFD shrinkage compared to conventional thresholding approaches. However, the algorithm’s performance is 
constrained by the inherent limitations of LRE. This paper presents a novel enhancement by integrating the component 
alignment map (CAM), which identifies and isolates regions of the TFD with similar components. CAM improves local 
component estimation, refines the shrinkage process, and reduces algorithmic parameters. Experimental results demonstrate 
the enhanced algorithm’s superior reconstruction performance for synthetic and real-world electroencephalogram signals, 
outperforming existing shrinkage algorithm. 
 
Keywords: Time-frequency distribution, Compressive sensing, Local Rényi entropy, Signal reconstruction, Multi-objective 
optimization. 
 

 
1. Introduction 
 

Time-frequency distributions (TFDs) are essential 
for analyzing non-stationary signals [1, 2]. While 
linear methods are inherently limited by the 
Heisenberg uncertainty principle, quadratic TFDs 
(QTFDs) often suffer from cross-term interference, 
which can obscure true signal components, commonly 
referred to as auto-terms [1]. To address these 
limitations, non-linear methods have been developed, 
such as synchroextracting transform (SET) [3] and  
CS-based methods, demonstrating robust performance 
across diverse signal types [4-7]. 

The CS technique explored in this study 
reconstructs TFDs from a subset of samples in the 
ambiguity function (AF). Importantly, the objective of 
CS-based methods in time-frequency signal analysis is 
to reconstruct the signal's auto-terms rather than the 
complete initial TFD [6, 7]. A key challenge in these 
methods is determining the optimal regularization 
parameter. If the regularization parameter is set too 
high, the reconstructed TFD can become overly sparse, 
leading to incomplete auto-terms [6, 7]. 

To overcome time-consuming process of manual or 
experimental selections of the regularization 
parameter, previous work [8] proposed TFD 
regularization by utilizing local Rényi entropy (LRE) 
[9, 10]. The usage of the estimated local numbers of 
components from the LRE enabled more effective 
TFD shrinkage on auto-terms compared to 
conventional regularization parameter [7, 8, 11, 12]. 

This paper improves the Rényi entropy-based 
shrinkage algorithm by integrating the component 
alignment map (CAM) introduced in [13]. CAM 

effectively distinguishes TFD regions based on the 
alignment of components, identifying whether they are 
more oriented toward the time axis or the frequency 
axis. Components aligned with the time axis are better 
analyzed using time slices, while those aligned with 
the frequency axis are more effectively processed with 
frequency slices [13]. By leveraging CAM’s ability to 
group components with similar alignments, the Rényi 
entropy-based shrinkage algorithm is simplified and 
utilizes more precise LRE estimates. 

The superior reconstruction accuracy of this 
improved algorithm is demonstrated on both synthetic 
and real-world electroencephalogram (EEG) seizure 
signals, which are characterized by multiple 
components with distinct alignments along the time 
and frequency axes. 
 
 
2. Time-frequency Signal Analysis 
 

The Wigner-Ville distribution (WVD) is a widely 
used TFD defined as [1]: 
 

 ௭ܹ(ݐ, ݂) =  ݖ ቀݐ + தଶቁ ∗ݖ ቀݐ − தଶቁ ݁ିଶఛ݀߬ஶିஶ , (1) 

 
where (ݐ)ݖ denotes the analytic form of a  
multi-component, non-stationary signal. The WVD is 
highly effective for estimating the instantaneous 
frequency of single-component linear frequency 
modulation (LFM) signals. However, for  
multi-component signals, the WVD introduces  
cross-terms, which obscure the representation and 
limit its applicability in modern signal analysis [1]. 
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To mitigate cross-terms, the AF is employed, 
defined as [1]: 
 

,ߥ)௭ܣ  ߬) =   ௭ܹ(ݐ, ݂)݁ଶగ(ఛିఔ௧)ஶିஶஶିஶ  (2)  ݂݀ݐ݀
 

Cross-terms, being highly oscillatory, are 
positioned away from the AF origin, unlike auto-terms, 
which are concentrated along the AF origin trajectory 
[1]. Consequently, 2D low-pass filtering in the AF 
domain is commonly used to suppress cross-terms. 
This leads to the class of QTFDs, ߩ௭(ݐ, ݂),  
defined as [1]: 
,ݐ)௭ߩ  ݂) =   ,ߥ)௭ܣ ,ߥ)݃(߬ ߬)݁ଶగ(ఔ௧ିఛ)݀߬݀ߥஶିஶஶିஶ , (3) 
 
where ݃(ߥ, ߬) is the low-pass filter applied in the AF. 
Although QTFDs improve cross-term suppression, 
they inherently involve a trade-off between auto-term 
resolution and cross-term reduction [1, 2]. 

To address these limitations, the adaptive 
directional TFD (ADTFD) incorporates adaptive 
filtering by adjusting the smoothing direction at each 
time-frequency (TF) point as [14]: 
 

,ݐ)(ௗ)ߩ  ݂) = ,ݐ)௭ߩ ݂) ∗∗ ,ݐ)ఏߛ ݂) (4) 
 

Here, the double asterisk denotes double 
convolution in ݐ and ݂, and ߛఏ(ݐ, ݂) is the smoothing 
kernel [14]: 
 

,ݐ)ఏߛ  ݂) = ଶగ ௗమௗഇమ ݁ିమ௧ഇమିమഇమ, (5) 

 
whose direction is controlled by ߠ, while  ݐఏ = ݐ (ߠ)ݏܿ + ݂ and ఏ݂ (ߠ)݊݅ݏ = ݐ− (ߠ)݊݅ݏ +݂  Parameters ܽ and ܾ control the smoothing .(ߠ)ݏܿ
along the time and frequency axes, respectively [14]. 

To automatically optimize the ADTFD, the locally 
adaptive ADTFD (LO-ADTFD) is employed [15, 16]. 
This approach selects TF points by minimizing across 
a predefined set of ADTFDs. The parameter set (ܽ, ܾ) = {(2,20), (2,30), (3,6), (3,8)} is used, while 
the smoothing window length of ߛఏ(ݐ, ݂)	is optimized 
for each combination as detailed in [15, 16]. 
 
 
2.1. Compressive Sensing-based Method 
 

Further improvements in TFD performance have 
been achieved by leveraging CS method [4-7]. The  
CS-based method utilized in this study reconstructs 
TFD from a sparse subset of AF samples, referred to 
as the CS-AF region ߥ)ࡿࢠ, ߬). Given that the CS-AF 
area resembles a rectangle centred at the AF origin 
similar to low-pass filtering, reconstruction algorithms 
are employed to iteratively improve the loss in  
auto-term resolution [4-7]. In this study, an adaptive 
CS-AF area with size தܰᇱ × ܰᇱ is used, where ఛܰᇱ and ఔܰᇱ  are the numbers of lag and Doppler bins, 
respectively [17]. Importantly, the CS-AF area must 

only include auto-term samples; otherwise, 
interference may reappear in the reconstructed TFD. 

The reconstruction algorithm seeks the optimal 
TFD solution by solving [4, 6, 7]: 

 
 ળݐ)ࢠ, ݂) = શࡴ ⋅ ,ߥ)ࡿࢠ ߬),	 (6) 

 
where શࡴ is the Hermitian transpose of a domain 
transformation matrix. Since multiple solutions for ળݐ)ࢠ, ݂) are possible, the regularization function 
emphasizes the desired properties of the solution  
[4, 6, 7]. The lଵ norm is usually employed to promote 
sparsity, leading to the unconstrained optimization 
problem [4, 6, 7, 18, 19]: 
 

 ળܔࢠ(ݐ, ݂) = arg minળࢠ(௧,)ห|ળݐ)ࢠ, ݂)|หଵ,	subject	to:	 ቚหળݐ)ࢠ, ݂) − શࡴ	ߥ)ࡿࢠ, ߬)หቚଶଶ ≤ ϵ, (7) 

 
where ϵ represents the energy tolerance criterion. The 
closed-form solution when using the lଵ norm is given 
as [4, 6, 7, 18, 19]: 
 

 ળܔࢠ(ݐ, ݂) = softఒ{ળݐ)ࢠ, ݂)}, (8) 
 
where soft{Υ௭(ݐ, ݂)} = sgn൫Υ௭(ݐ, ݂)൯max(|Υ௭(ݐ, ݂)| −λ, 0), with ߣ being the regularization parameter. The 
choice of ߣ is signal-dependent and non-trivial: a low ߣ value reconstructs interference with smeared  
auto-terms, while a high ߣ value results in the loss of 
critical auto-term components [4, 6, 7, 18, 19]. 
 
 
2.2. Measuring Sparse Time-frequency  
       Distributions 
 

A reliable and accurate metric for evaluating 
reconstructed TFDs is crucial. Computationally 
efficient global measures, which assess the TFD as a 
whole and yield a single output value, are commonly 
used. One such measure is the concentration  
metric [20]: 
 

ܯ  = ଵேே   ฬ ఘ(௧,)  ఘ(௧,)ௗ௧ௗಮషಮಮషಮ ฬభమஶିஶஶିஶ  ൩ଶ, (9)݂݀ݐ݀

 
where ௧ܰ and ܰ represent the number of time samples 
and frequency bins, respectively. Another widely used 
global measure is the Rényi entropy, defined as [21]: 
 

 ܴ = ଵଵିఈೃ logଶ   ൬ ఘ(௧,)  ఘ(௧,)ௗ௧ௗಮషಮಮషಮ ൰ఈೃஶିஶஶିஶ  (10) ,݂݀ݐ݀

 
where ߙோ is usually chosen as an odd integer [21]. 

However, recent studies [7, 8, 11] have shown that 
these global measures are not adequate for assessing 
reconstructed TFDs since they do not provide 
information about the local positions of auto-terms and 
may treat auto-terms and interference equally. To 
address this, the LRE was implemented which captures 
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the local behavior of components for each time, ݐ, and 
frequency slice, ݂, as [7, 8, 11]: 
 

(ݐ)௧ఘ(௧,)ܥܰ  =	= 2ோ൫ఞబ{ఘ(௧,)}൯ିோ൫ఞబ{ఘref(௧,)}൯, (11) 

 
)ఘ(௧,)ܥܰ  ݂) =	= 2ோ൫ఞబ{ఘ(௧,)}൯ିோ൫ఞబ{ఘref(௧,)}൯, (12) 

 
where notations ݐ and ݂ denote localization through 
time and frequency slices, respectively, while ߩref(ݐ, ݂) 
represents the reference TFD. The operators ߯௧బ and ߯బ extracts TFD samples within intervals  [ݐ − Θ௧/2, ݐ + Θ௧/2] and ൣ ݂ − Θ/2, ݂ + Θ/2൧, 
respectively, controlled with the window lengths Θ௧ 
and Θ [7, 8, 11, 12]. 

The LRE enabled a comparison of the local number 
of components before and after reconstruction using 
the mean squared error (MSE) [8, 11, 12]: 
 

ܧܵܯ = ଵே ∑ ۈۉ
ۇ ேഐ(,)(௧)ିேળܔࢠ(,)(௧)୫ୟ୶ቌேഐ(,)(௧),ேળܔࢠ(,)(௧)ቍۋی

ଶۊ
ே௧ୀଵ +

+ ଵே ∑ ۈۉ
ۇ ேഐ(,)()ିேળܔࢠ(,)()୫ୟ୶ቌேഐ(,)(),ேળܔࢠ(,)()ቍۋی

ଶۊ
ேୀଵ   

(13) 

 
A high MSE indicates an oversparse TFD or one 

contaminated with interference, resulting in degraded 
auto-term quality. 
 
 
2.3. Component Alignment Map 
 

This paper leverages the CAM, a method proposed 
in [13], to segment the TFD into regions suitable for 
either time or frequency localization. The CAM is 
constructed through the following key steps [13]: 

1. For the input TFD, two new TFDs are 
generated, each containing only auto-term 
maxima extracted based on the numbers of 
significant components ܰܥ௧ (in time slices) and ܰܥ (in frequency slices); 

2. The connectivity of auto-terms in both TFDs is 
assessed using a metric that counts the number 
of connected regions of samples; 

3. Based on the connectivity metric, auto-terms 
are classified as time-aligned (ݐ)ܯܣܥ, ݂) = 1) 
or frequency-aligned (ݐ)ܯܣܥ, ݂) = 0); 

4. TFD segments with significant local maxima in ܰܥ௧ or ܰܥ are extracted. Each segment 
undergoes further analysis through  
re-estimation of the local number of 
components using the LRE and re-evaluation 
using the connectivity metric from step 2; 

5. The initial CAM from step 3 is refined for each 
segment identified in step 4 that contains 
components with differing alignments. 

This creates CAM where ones indicate TFD 
regions where localization in time slices is needed, 
while zeros indicate regions where localization in 
frequency slices is preferred. By multiplying the CAM 
and TFD, components with similar alignments can be 
extracted. Two operators are then defined: η୲{ݐ)ݖߩ, ݂)}, which extracts components where ݐ)ܯܣܥ, ݂) = 1, and η{ρݐ)ݖ, ݂)}, which extracts 
comoponents where ݐ)ܯܣܥ, ݂) = 0 [13]. 
 
 
3. Rényi Entropy-based Shrinkage Algorithm 
 

The Rényi entropy-based shrinkage algorithm, 
referred to as RTwIST [8, 11], builds on the two step 
iterative shrinkage/thresholding (TwIST) algorithm 
[22]. The update equation for the (݊ + 1)-th iteration 
is defined as [8, 11]: 
 ൣળܔࢠ(ݐ, ݂)൧[ାଵ] = (1 − ,ݐ)ܔࢠTwIST)ൣળߙ ݂)൧[ିଵ] TwISTߙ)+	+ − ,ݐ)ܔࢠTwIST)ൣળߚ ݂)൧[] TwISTshrink௧,ߚ+	+ ቐ ൣળܔࢠ(ݐ, ݂)൧[] ++શࡴ ቀࢠெ(ߥ, ߬) − શൣળܔࢠ(ݐ, ݂)൧[]ቁቑ 

(14) 

 
Here, the shrink௧, operator performs TFD 

shrinkage by retaining only the largest ܰܥ௧ or ܰܥ 
surface areas around local maxima in time or 
frequency slices, respectively. These local maxima 
correspond to auto-terms. The amount of retained 
samples is controlled by parameters ߜ௧ and ߜ, which 
adjust the sparsity. Lower ߜ௧, values reduce 
oversparsity but also lower the resolution of the 
reconstructed TFD, while higher ߜ௧, values improve 
resolution but may increase oversparsity [8, 11]. 

The result of shrink௧, operator, denoted as ς௭(ݐ, ݂), is obtained via iterative shrinkage over time 
and frequency slices, expressed as [8, 11]: 

 
 [ς௭௧,(ݐ, ݂)][ାଵ] = shrink௧,{߫௭ᇱ ,ݐ) ݂)}, (15) 

 
where ߫௭ᇱ ,ݐ) ݂) = ൣળܔࢠ(ݐ, ݂)൧[] + શࡴ ൬ࢠெ(ߥ, ߬) − શൣળܔࢠ(ݐ, ݂)൧[]൰. In 

the existing algorithm, the outputs of the shrinkage 
operations, ς௭௧(ݐ, ݂) and ς௭(ݐ, ݂), are combined via a 
weighted average [8,11]: 
 [ς௭(ݐ, ݂)][ାଵ] =  ς௭௧(ݐ, ݂) + (1 − ,ݐ)ς௭ ( ݂), (16) 
 
where  is the global weighting parameter in the range [0,1]. However, as  is applied globally across the 
entire TFD, it fails to account for components with 
locally varying directions and shapes. This limitation 
makes the use of a single  value inappropriate for 
signals with diverse local structures. 

To address this issue, this paper introduces 
RTwIST-CAM, which replaces (16) by integrating the 
CAM as: 
 

 [ς௭(ݐ, ݂)][ାଵ] = shrink௧{η୲{ς௭ᇱ ,ݐ) ݂)}} +	+shrink{η{ς௭ᇱ ,ݐ) ݂)}} (17) 
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The final shrunken TFD consists of two 
independent shrinkage operations, shrink௧ and shrink, automatically guided by the CAM. Notably, 
the parameter  is no longer required, significantly 
simplifying the algorithm by reducing the number of 
parameters that end-users must specify for an unknown 
signal. Additionally, the multi-objective particle 
swarm optimization (MOPSO) method, as employed 
in [8], will optimize fewer parameters. This reduction 
simplifies the optimization problem and decrease the 
time required to achieve the optimal reconstructed 
TFD. Unlike the conventional RTwIST algorithm, 
which relies on predefined inputs ܰܥ௧ and ܰܥ, 
RTwIST-CAM employs more precise local component 
estimates derived from TFDs with disjoint 
components: ߟ௧{ߩ௭(ݐ, ݂)} and ߟ{ߩ௭(ݐ, ݂)}. 
 
 
4. Experimental Results and Discussion 
 

The performance of the proposed RTwIST-CAM, 
the existing RTwIST and SET algorithms was 
evaluated using both a synthetic signal, composed of 
six linear and non-linear components, and a real-world 
EEG seizure signal [7, 13, 14]. To enhance the EEG 
signal, a differentiator filter was applied to whiten the 
background and highlight spikes, as recommended in 
[23]. For the synthetic and EEG seizure signals, the 
CS-AF areas were calculated as 17 × 25 and 15 × 15, 
respectively, and the reconstruction parameter was 
fixed at ϵ = 10ିଷ as in [6-8,11-13]. The LRE was 
computed using LOADTFD and parameters ߙோ = 3 
with Θ௧ = Θ = 11 for the synthetic signal, and  Θ௧ = Θ = 5 for the EEG seizure signal,  
following [13]. 

Fig. 1 illustrates the WVDs and LOADTFDs for 
the considered signals. It is evident that LOADTFD 
provides better representation for these signals, as 
cross-terms in the WVD obscure the true components. 
 

 
 

Fig. 1. (a) WVD of synthetic signal; (b) WVD of EEG 
seizure signal; (c) LOADTFD of synthetic signal;  

(d) LOADTFD of EEG seizure signal. 

Fig. 2 depicts the obtained CAMs for the 
considered signals. For the synthetic signal example, 
the black areas in CAM encompass two constant FM 
components, indicating their suitability for localization 
in time slices. Similarly, for the EEG seizure signal, 
the CAM distinguishes between the constant FM 
component and the spiky components. 

 

 
 
Fig. 2. CAM for the considered signals: (a) synthetic signal; 

(b) EEG seizure signal. Areas in black represent zeros, 
while areas in white represent ones. 

 
When estimating the local number of components 

from the entire TFD, artificial increase in the estimated 
component numbers can occur, as shown by the dotted 
lines in Fig. 3. These inaccuracies arise when the 
analyzed signal components deviate from the reference 
signal. This issue is mitigated by separating 
components with similar alignment through the 
multiplication of the CAM and the TFD, as illustrated 
in Fig 3. These refined estimates are subsequently 
incorporated into the RTwIST-CAM algorithm. 

 

 
 
Fig. 3. Local number of components for the considered 
signals obtained using the LRE: (a,c) synthetic signal; (b,d) 
EEG seizure signal. Solid purple lines indicate estimations 
on the full TFD, while dotted red lines indicate estimations 
on separated TFDs using CAM. 

 
Fig. 4 presents the obtained TFDs for the 

considered signals, with Table 1 providing quantitative 
performance metrics to complement the visual 
assessment. Note that the optimal RTwIST,  
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RTwIST-CAM, and SET parameters have been 
selected manually in this research. 

 

 
 
Fig. 4. Obtained TFDs of the considered signals:  
(a) synthetic signal, SET; (b) EEG signal, SET; (c) synthetic 
signal, RTwIST (ߙTwIST = 0.91, TwISTߚ  = 0.82, ௧ߜ	  = ߜ = 0.85,   = 0.7); (d) EEG signal, RTwIST 
TwISTߙ) = 0.9, TwISTߚ  = 0.81, ௧ߜ  = ߜ = 0.92,   = 0.6); 
(e) synthetic signal, RTwIST-CAM (ߙTwIST =0.91, TwISTߚ  = 0.8, ௧ߜ  = ߜ = 1); (f) EEG signal,  
RTwIST-CAM (ߙTwIST = 0.901, TwISTߚ  = 0.822, ௧ߜ	  = ߜ = 1). 
 
 
Table 1. Performance comparison between  
the RTwIST-CAM, RTwIST and SET algorithms  
for the considered signals. Values in bold indicate  
the best-performing algorithm for each measure. 

 
 Synthetic signal EEG seizure signal 

 RTwIST SET 
RTwIST-

CAM 
RTwIST SET

RTwIST-
CAM MSE 0.1478 0.1881 0.0878 0.1654 0.5587 0.0895 0.0168 0.0103 0.0268 0.0177 ܯ 0.1077 0.0174 

 
The reconstructed TFDs generated by the proposed 

RTwIST-CAM algorithm demonstrate superior  
auto-term resolution, continuity, and cross-term 
suppression compared to the RTwIST algorithm and 
SET. This improvement is particularly notable for the 
EEG seizure signal. That is, constant FM and spiky 
components are reconstructed with greater continuity 
and less non-linear distortions compared to the 

RTwIST algorithm, while the SET shows unsuitable 
for representing spikes. 

The numerical results in Table 1 validate these 
observations. For the synthetic signal, both measures 
indicate significantly better performance using the 
proposed RTwIST-CAM algorithm. However, for the 
EEG seizure signal, the existing RTwIST algorithm 
shows better performance based on ܯ measure. This 
results from discontinuities, such as missing  
auto-terms (as visible in Fig. 4d for RTwIST), which 
artificially reduce the M value. Nevertheless, the MSE 
measure highlights improved preservation of signal 
auto-terms when using the RTwIST-CAM algorithm. 

The runtime complexity analysis of the  
RTwIST-CAM algorithm, based on 1000 independent 
simulation runs, reveals its performance 
characteristics. For synthetic and EEG signals, the 
LRE calculation times were 0.878 and 1.047 seconds, 
respectively, while CAMs were generated in 1.478 and 
1.621 seconds. This indicates that RTwIST-CAM's 
input preparation time is approximately double that of 
the original RTwIST algorithm. However,  
RTwIST-CAM demonstrates faster convergence, 
reconstructing TFDs in 1.47 seconds compared to 
RTwIST's 1.66 seconds. The SET method processed 
signals more quickly (0.478s for synthetic, 0.587s for 
EEG), highlighting the higher computational 
complexity of CS-based methods. Notably, when 
using MOPSO for parameter optimization, CAM is 
calculated only once at the beginning, and the 
reduction in parameters requiring optimization is 
expected to significantly decrease the overall 
optimization time. The CS-based method is primarily 
designed for offline signal analysis applications. 

 
 

4. Conclusions 
 

This paper introduces the integration of the CAM 
with the RTwIST algorithm, specifically targeting 
multi-component signals with distinct alignments 
along the time and frequency axes of a TFD. Previous 
studies emphasize that components with different 
alignments require specific localization approaches. 
Failure to separate such components leads to less 
accurate LRE estimates, and, consequently, reduced 
performance of the original RTwIST algorithm. 

The incorporation of CAM into the RTwIST 
algorithm offers several significant advantages. 
Firstly, it enables more accurate LRE estimates by 
separating components with distinct alignments 
Secondly, it facilitates more precise localization for the 
shrinkage operation by creating two TFDs with 
disjoint components of similar alignment. Thirdly, it 
automatically identifies which components should be 
analyzed with the appropriate localization and LRE 
estimates, effectively eliminating the need for the 
parameter . This not only simplifies the manual 
selection of algorithm’s parameters but also creates 
opportunities to reduce computational complexity 
when using meta-heuristic optimization methods for 
automatic parameter tuning. 
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Experimental validation using synthetic and  
real-world EEG seizure signals demonstrate the 
enhanced algorithm's superiority over the original 
RTwIST algorithm and SET, achieving better auto-
term resolution, consistency, and cross-term 
suppression. This advancement strengthens CS 
methods over SET. Future research will investigate the 
effects of reducing the number of parameters when 
employing MOPSO and assess RTwIST-CAM’s 
performance on noisy signals. Moreover, future work 
will explore algorithm’s potential for real-time 
implementation, and the possibility of integrating deep 
learning and image processing techniques for CAM 
determination. 
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Summary: Machine learning, deep learning, natural language processing, expert systems (ES), robotics, machine vision, and 
speech recognition are some of the subsets of artificial intelligence (AI). The ES subset, which has proved itself to be a potent 
tool for innovative engineering design and solutions, is the aim of this paper. To the best of our knowledge, there is no relevant 
ES (AI) literature on CLT and DLT, despite its glowing widespread use globally. This paper fills that void. The paper is divided 
into two sections. The evident inaccuracy of the DLT in some of the literature is examined in the first section. For the first 
time, bonding, interlayer slip, and ply angle are taken into consideration when deriving and solving the rigorous governing 
equations using Fourier trigonometric series. Essential characteristics like the ply angle, interlayer slips, and bonding stiffness 
are taken into account in the formulation for the first time. Both CLT and DLT can use the model and solution, which has been 
verified and validated. A parametric analysis is performed to ascertain how these properties affect structural performance. The 
findings show that when serviceability is the quantity of interest, bonding stiffness shouldn't be underestimated. Now, experts 
can quantify the ubiquitous, perfectly rigid bonding. The findings affirmed that panels subjected to transverse loads are better 
suited for CLT than DLT. The essential design characteristics were included in a practical formula for bending stiffness that 
was coined, verified, and validated. The second section introduces a novel toolkit and methodology based on deterministic ES. 
That makes it possible for virtual brains and human experts to collaborate to arrive at a satisfactory design. 
 
Keywords: Engineered timber laminates, Mass timber, Bending stiffness, Bonding stiffness, CLT, DLT, GLT, Interlayer slip. 
 

 
1. Introduction – Hankinson's Formula 
 

In general, wood composites date back to ancient 
Egypt [1]. The first patent application for the new 
cross-laminated timber, or CLT, was submitted in 
1920 [2-5]. Following the completion of a PhD study 
in Austria, notable advancements were made in 1994. 
The EU and Austrian governments authorized the 
commercial production of CLT in 1998. The use of 
CLT construction started to grow in Canada and the 
US in the 2000s after it gained popularity in Europe. 
Additional details regarding the history of the CLT can 
be found in the literature [6-9]. The DLT is not new 
technology, just like the CLT [10-13]. Diagonalization 
was used with dowels, veneer, plywood, and nails. In 
2011, the term DLT was coined in the literature by 
Bejtka and Bosil, who studied it under in-plane  
loads [14, 15]. 

Bending stiffness is used in engineering 
calculations in a variety of formulas that are specified 
for the CLT by international design specifications, 
such as the Swedish, American, Canadian, European, 
Italian, and Croatian ones. To our knowledge, no 
specification has a comparable formula for the bending 
stiffness of the DLT. Nonetheless, some suggestions 
regarding the stiffness of the DLT can be found online. 
The DLT's missing formula is developed and presented 
in this paper. In addition to bonding with finite 
properties and the ply angle, it also covers the CLT and 
hybrid species for the first time. 

The available CLT stiffness formulas are 
determined by cross-sectional and material elastic 
properties. First, for the DLT's flexural stiffness, some 
websites suggested combining the Hankinson formula 

with the shear analogy method. It is an inaccurate idea 
[16]. Rather than transverse behavior, the Hankinson 
formula was empirically introduced from the idea of 
in-plane failure theory. 

Arnold utilized Hankinson's formula for the  
off-axis modulus of elasticity transformation in his 
PhD thesis [17]. Arnold's method was adopted in some 
DLT studies under transverse load. In addition to being 
incorrect, that adoption lacks any references that link 
the in-plane behavior of the Hankinson formula to the 
Bernoulli-Euler theory, which emphasizes the flexural 
behavior of panels. 

Second, the length-to-width ratio of a classic CLT 
is between 6 and 30, according to the American 
Plywood Association [18]. This ratios range 
demonstrates how well CLT panels perform in 
engineering calculations as beams. Under in-plane 
loads rather than transverse ones, DLT has been 
studied in the literature [17, 19, 20]. 

Finally, the "stability of wood components" has 
multiple interpretations. It might refer to dimensional 
stability, which is outside the scope of this applied 
engineering paper and is a scientific subject. To our 
knowledge, there isn't a single study on the structural 
stability of DLT panels in the literature [21-23]. A few 
sources, nevertheless, have looked into the stability 
coefficient for buckling of CLT under axial 
compression. 
 
 
2. Analytical Model and Solution 
 

Though DLT was invented decades ago and to our 
knowledge, there isn't a rigorous analytical model with 
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solution for the CLT and DLT in the literature. This 
study has filled the gaps. It produced an exact  
series-type solution that accounts for real bonding 
stiffness, interlayer slip, and ply angle. The model and 
solution are applicable to both DLT and CLT. 

For the analysis and design of CLT and DLT, 
perfect rigid bonding is widely assumed in the 
literature [24, 25]. This is not a realistic assumption. 
The unrealistic formulation is replaced in this paper by 
the constitutive differential equations of the bending 
moment curvature and the interlayer slip. After 
considering the newly introduced ply angle and  
non-rigid bonding between the layers, the governing 
differential equations are derived, and then the 
boundary conditions are considered. Since there are no 
analytical solutions in literature that incorporate the 
bonding with finite stiffness, Fourier trigonometric 
series are used to solve and satisfy all of the governing 
equations and boundary conditions. The series-type 
solutions are used in the literature because they can 
adapt to different loading scenarios and boundary 
conditions [26-28]. 

The validity and accuracy of our formulation and 
solution were ascertained by comparing the predicted 
serviceability measure, i.e., deflections, with selected 
specific analytical results obtained in the literature by 
credible sources. All the outcomes are in  
good-satisfactory agreement. Parametric analysis was 
performed to determine the effects of bonding 
stiffness, interlayer slip, and ply angles on the 
structural performance. 

It is worth noting that the rigorous foundation for 
the type of non-rigid bonding engineered laminates has 
been reported in the literature by this author [29-40]. 
Our contributions were acknowledged by NASA to be 
among the top 1.5 % of pertinent achievements. 

For our analytic model and solution, consider a 
panel of length and width L and b, and depth d1 and 
d2, where subscript 1 refers to the upper layer. The 
panel is subjected to a uniform transverse load of 
intensity q. Assuming the layers have the same 
curvature, then: 
 

 
భభ	୍భ = మమ	୍మ = −	ୢమ୵ୢ	୶మ  (1) 

 
Eq. (1) can be rewritten as follows: 

 

 Mଵ +	Mଶ = −EI	 ୢమ୵ୢ	୶మ, (2) 

 
where Mi is the bending moment, Ei is the modulus of 
elasticity, Ii is the moment of inertia, w is a deflection, 
and x is the coordinate axis with the origin at the 
panel's left end. The panel is not under external  
in-plane load, thus: 
 

 ∑ N୧ଶ୧ୀଵ = 0, (3) 
 
where Ni is the internal axial force. At the interface 
between the layers, the compatibility of deformations 

must be satisfied. The compatibility condition is 
expressed as [27, 29, 44]: 
 

 V = k du = k (uଵ	cosଶθ −	uଶ), (4) 
 
where V is the interlayer shear flux, ui is the in-plane 
displacement, θ is the ply angle, and k is the bonding 
stiffness. The equilibrium equation of the upper layer 
requires that: 
 

 Eଵ Aଵcosଶθ ୢమ୳భୢ୶మ + V = 0, (5) 

 
where A is a cross-sectional area. The applied bending 
moment, Ma, and the resisting moment, Mr, must be 
equal. Thus 
 

 Mୟ = −EI ୢమ୵ୢ ୶మ − Eଵ	Aଵcosଶθ	d	 ୢ୳భୢ୶ , (6) 

 
where d is the center-to-center distance. According to 
the fundamentals of conventional engineering 
mechanics [27, 43, 44], 
 

 ୢమୢ ୶మ = EI ୢర୵ୢ ୶ర − Eଵ Aଵcosଶθ	d ୢయ୳భୢ	୶య = p, (7) 

 
where p is the applied load, and EI = 	Eଵ	Iଵ	cosଶθ −	Eଶ	Iଶ.	

The solution to the governing equations must 
satisfy the boundary conditions, which for simply 
supported panels are w=0 at x=0 and x=L, and N at 
x=0 and x=L. 

The displacements and applied load are expressed 
as a trigonometric series as follows: 
 

 w(x) = ∑ W୧ sin α୧	x	ஶ୧ୀଵ,ଶ,.. , (8) 
 

 uଵ(x) = ∑ uଵ୧ cos α୧	x	ஶ୧ୀଵ,ଶ,.. , (9) 
 

 uଶ(x) = ∑ uଶ୧ cos α୧	x	ஶ୧ୀଵ,ଶ,.. , (10) 
 

 p = ∑ p୧ sin α୧	x	ஶ୧ୀଵ,ଶ,.. , (11) 
 

in which α୧ = ୧	 and	p୧ = ସ	୮୧	  for uniformly applied 

load of intensity po, p୧ = ଶ		 ୱ୧୬	୶౦ 	for concentrated 

load P at distance xp, and p୧ = ସ	୧	  for end moment 

Mo. The series equations satisfy the boundary 
conditions. The pi of various loads can be added for a 
combined effect. 

The first governing equation is obtained by 
substituting Eqs. (9) and (10) in Eq. (3). Thus 
 

 Eଵ Aଵuଵ୧ cosଶθ + Eଵ	Aଵuଶ୧ = 0 (12) 
 

Substituting Eqs. (8), (9), and (10) in Eq. (5)  
results in 
 

 k d α୧W୧ − (Eଵ Aଵuଵ୧ cosଶθ	α୧ଶ + k)	uଵ୧ ++k uଶ୧ = 0	 (13) 

 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

32 

The second governing equation is obtained from 
Eq. (12) in conjunction with Eq. (13), as follows: 
 

 
୩	ୢ	భ	భ 	−	ቀα୧ଶ + ୩ ୡ୭ୱమ 	ቁ	uଵ୧ = 0, (14) 

 

in which EA = భ	భ	మ	మ		ୡ୭ୱమభ	భ	ୡ୭ୱమ	ି	మ	మ.	
Now, by combining Eqs. (11), (8), and (9) with  

Eq. (7), the third governing equation is obtained as 
 

 EI	α୧ସ	W୧ +	Eଵ	Aଵ	d cosଶθ	α୧ଷ	uଵ୧ = p୧ (15) 
 

Finally, Wi is found by solving Eqs. (14)  
and (15), thus 
 

 
W୧ = ୮	ర	(୍ ି	 ౡ	ౚమಉమశ	 ౡుఽ)  (16) 

 
By following the previous analytical formulation 

using three layers panel, the solution is found as 
follows for uniform load of intensity po: 
 W୧ = ସ	୮		మ(	୧)ఱ	୍	[ ଶ ୢమቆଶ	ୢమି	 ుుభ	ఽభ ౙ౩మಐା	భౡ	ቀ	ಘైቁమቇ	 − 1], (17) 

 
where 1, 2, and 3 refer to the upper, middle, and bottom 
layers, respectively, and d is the distance between  
mid-plane of adjacent layers. 
 
 
3. Validation 
 

The literature incorporates numerical and 
experimental studies rather than a comprehensive 
formulation and solution for DLT and CLT panels. 
Thus, the above model and solutions were validated 
using existing specific special cases with existing 
solutions obtained in credible sources in the literature 
[25, 27, 43]. For this purpose, we considered two- and 
three-layer panels with the following properties: span 
L=3.66 m, width=0.24 m, thickness=0.3 m,  
E=10 MPa, and a uniform load of q=575 kN/m. The 
following table compares the results for two- and 
three-layers panel: 

Table 1 shows that the solutions are in satisfactory 
good agreement. 
 
 

Table 1. Comparison of the maximum deflection  
of a simple CLT panel. 

 
Number of 

Layers 
Present 

Sol. 
Ref. [25, 
27, 43] 

Col. 2/Col.3, 
% 

2 0.242 0.249 97 

3 0.219 0.231 95 
 
 
4. Practical Method – Hussein's Formula 
 

In order to determine the bending stiffness of 
mechanically connected CLT panels, formulas have 

been provided by the Croatian, American, Canadian, 
European, Italian, and Swedish standards  
[8, 25, 47-50]. The rolling shear is used in those 
formulas to represent the shear deformation. This 
paper's author created a number of rigorous solutions 
for engineered laminates with bonding that had finite 
stiffness, and NASA recognized his contribution as 
one of the top 1.5 % of accomplishments [29-40]. 

Based on our completed pertinent studies, a novel 
practical formula is coined in this section for CLT and 
DLT with imperfect bonding. According to classical 
Euler-Bernoulli theory, the effective bending stiffness 
of CLT panels with perfect bonding, EIeff, is  
as follows: 
 (EI)ୣ = ∑ (EI)୧୬୧ୀଵ , (18) 
 
where I is the moment of inertia, E is the modulus of 
elasticity, and i is the ith layer. By following the exact 
procedure in our previous completed studies, the 
following equation is obtained for the apparent 
stiffness. 
 (EI)ୟ୮୮ = ∑ (EI cosθଶ)୧୬୧ୀଵ +	 (		ୟమ)ଵା	ಘమ	ు	ఽ	ే	ైమ ൨, (19) 

 
where a is the distance of the centroid to the panel’s 
centroid, K is the real bonding stiffness, and L is the 
span of the panel. Because literature has no studies to 
compare with, we used the solutions of selected 
particular cases where solutions were obtained by 
credible scholars to validate the above formula. This 
approach is known in literature where data is lacking 
[26, 27, 28, 51]. Like Hankinson's formula, Eq. (19) is 
referred to as the Hussein's formula. Both formulas are 
for practical use, easy to understand, readily applicable 
to real design situations, concise, and use readily 
available variables. 
 
 

Table 2. Comparison of the bending stiffness using  
Eq. (19) and other sources. 

 
Ply angle classic/Eq. (19), % 

0/0 97.2 % 
0/90/0 97.0 % 
90/0/90 100 % 

0/0/0 96.7 % 
90/0/0/0/90 100 % 
0/90/0/90/0 100 % 
0/0/0/0/0 100 % 

0/0/0/0/0/0/0 100 % 
90/0/90/0/90/0/90 100 % 

 
Equation (19) was used to calculate the stiffness of 

ten CLT and DLT with different configurations. All of 
the above panels have E=106 psi. All the results are in 
good satisfactory agreement. 
 
 
5. Discussion 
 

Fig. 1 illustrates how the ply angle affects the 
deflection for both two- and three-layer panels. When 
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the angle increases from 10 degrees by two orders of 
magnitude, the deflection increases by 14 %; however, 
when the angle increases from 60 degrees by the same 
order, the deflection increases by 164 %. This finding 
suggests that the DLT is not suitable for applications 
under transverse loads. The CLT has the least 
deflection due to high bending stiffness. The deflection 
at any ply angle can now be computed analytically 
using the series solution that has been presented. There 
is no literature on such a tool. 

 

 
 

Fig. 1. Effect of ply angle on DLT deflection. 
 

The load-slip curves were obtained in some studies 
[44, 46]. The combined effects of bonding stiffness and 
ply angle on the maximum deflections of two- and 
three-layer panels are shown in Fig. 2. The deflection 
is more sensitive to changes in the bonding stiffness, k, 
value in its lower range for all ply angles. After 
stiffness reaches a certain value, the bonding could be 
regarded as practically rigid. Using a common 
engineering sense, a very rigid bonding would be 
unnecessary with weak species, and the opposite 
would be unwise. This discovery is not mentioned in 
literature. 

 

 
 

Fig. 2. Effect of bonding stiffness on deflection. 
 

Fig. 3 shows the combined effects of ply angle and 
bonding stiffness on interlayer slippage. It is seen that 
slippage essentially becomes insensitive to bonding 
stiffness after undergoing a sharp nonlinear change at 
low k values. This is another significant finding. For 
instance, when the ply angle was changed from 30 to 
60 degrees with k=0.5 MPa, the slippage increased by 
97 %; however, when the angle was changed from zero 
degrees by the same order of magnitude, the slippage 
increased by only 18 %. 

 
 

Fig. 3. Effect of bonding stiffness and ply angle  
on interlayer slippage. 

 
Figs. 2 and 3 provide an answer to what constitutes 

perfect bonding. That corresponds to the k value at 
which the change in deflection is considered 
practically insensitive. 

Fig. 4 depicts the effect of ply angle on bending 
stiffness. Again, as the ply angle increases the stiffness 
decreases. This is another proof that CLT performs 
better than DLT under transverse loads. The figure 
demonstrates that the bending stiffness remains 
relatively high up to an angle of about 40 degrees. 

 

 
 

Fig. 4. Effect of ply angle on bending stiffness  
of 3-layer DLT. 

 
 
6. AI Toolkit for CLT and DLT 
 

In general, the goal of AI is to use computers to 
carry out tasks that call for human intelligence. The 
reader can find the wide breadth and deep depth of the 
realm of AI in several noticeable review articles  
[52-55]. The connection between CLT and DLT and 
AI is noticeably absent in literature; thus, there is no 
pertinent AI-based research and literature. This paper 
is an attempt to close this gap. Our AI 
conceptualization is based on the fundamentals of 
expert systems and algorithms, that are subsets of the 
AI technologies, that were applied in diverse areas  
[56-67]. Because we applied engineering mechanics, 
which is a deterministic field, the toolkit is also 
deterministic. Thus, statistical simulations or database 
sets are not required. 

Figs. 5 and 6 show the general outline and the 
dashboard of the AI toolkit. The toolkit was developed 
based on known available ES studies [46, 68-75]. 
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Typical input data includes geometrical 
dimensions, materials' properties, and the applied load. 
Once the input data is entered, the toolkit executes  
If-Then loops to calculate the deflection using the 
developed analytical model explained previously. The 
expert examines the output and does modifications and 
changes, then re-runs the toolkit. 

 

 
 

Fig. 5. General outline of the AI toolkit. 
 

 
 

Fig. 6. Dashboard of the AI toolkit. 
 

Fig. 7 illustrates the iterative search process for the 
design that meets the requirements. An expert and the 
toolkit can exchange diagnostic iterative cycles of 
input and output that end when both of the two sides 
are satisfied. 
 
 

 
 

Fig. 7. An AI-based design process. 

The MS Excel Solver can be used to modify the 
data based on defined constraints by the expert. Fig. 8 
shows a typical snapshot of the Solver. A basic 
understanding of programming can be used to find a 
solution without using the app in Fig. 8. 
 

 
 

Fig. 8. Excel Solver to reach satisfactory solution. 
 

The suggested methodology enables both human 
and virtual brains to jointly arrive at an acceptable 
design. The real human brain is preserved throughout 
the process because engineering design takes into 
account incalculable factors like practical 
considerations, experience, interdisciplinary 
collaborations, heuristic rules, etc. 
 
 
7. Conclusions 
 

Artificial intelligence became a potent tool for 
innovative engineering solutions and design in today's 
world. Nonetheless, literature has no AI applications 
on engineered DLT and CLT. This paper closes this 
gap using ES, which is one of the AI subsets. The paper 
encompasses two interconnected sections. 

In the first section, the paper critiques the evidently 
misrepresented literature on DLT. Also, a novel 
comprehensive model for the DLT and CLT was 
developed. The rigorous engineering mechanics-based 
governing equations are derived, then solved using 
Fourier trigonometric series. The series-type approach 
was essential because a closed-form solution would be 
unfeasible and is adaptable for various loading 
scenarios and boundary conditions. For the first time, 
essential properties such as the bonding stiffness, the 
interlayer slips, and the ply angle are considered in the 
formulation. Several examples are used to validate and 
verify the formulation. A parametric analysis is 
conducted to ascertain how these properties impact 
structural performance. The findings suggest that the 
smaller the ply angle, the higher the bending stiffness, 
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and the bonding stiffness must be considered in the 
design when serviceability is the quantity of interest. 
The paper addressed what really constitutes perfectly 
rigid bonding that dominates the literature. In addition, 
a practical formula was developed for bending 
stiffness. It includes bonding stiffness, ply angle, and 
cross-sectional properties. It was also validated and 
verified. The formula is practical, easy to understand, 
readily applicable to real design situations, concise, 
uses readily available variables, and allows for 
calculations without unnecessary complexity. 

In the second section, a novel AI-based 
methodology and toolkit are coined. The real human 
expert and virtual intelligence to cooperate in 
achieving satisfactory designs. An expert and the 
toolkit can exchange diagnostic iterative cycles of 
input and output that end when both of the two sides 
are satisfied. The Excel MS Solver is introduced to 
facilitate the implementation of the human-computer 
exchange. The suggested methods enable both human 
experts and virtual brains to jointly arrive at a 
satisfactory design. The real, actual human brain is 
preserved throughout the process because engineering 
design takes into account incalculable factors like 
practical considerations, experience, interdisciplinary 
collaborations, heuristic rules, etc. 
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Summary: The electroencephalogram (EEG) directly measures the electrical activity generated by the brain. Unfortunately, 
it is often contaminated by various artifacts, notably those caused by eye movements and blinks (EOG artifacts). Such artifacts 
are usually removed using an independent component analysis (ICA) or other blind source separation techniques. However, it 
is difficult to assess whether subtracting EOG components estimated through ICA removes some neurogenic activity. It is 
crucial to address this question to avoid biasing EEG analyses. Toward that objective, we developed a deep learning model for 
EOG artifact removal that exploits information about eye movements available through eye-tracking (ET). Using a multimodal 
EEG and ET open-access dataset, we trained within-subject a long short-term memory (LSTM) model to predict the component 
of EEG signals predictable from ET data. We further used this ET-informed evaluation of EOG artifacts to investigate the 
sensitivity and specificity of ICA. Our analysis indicates that although ICA is very sensitive to EOG, it has a comparatively 
low specificity. These results motivate further research on EEG artifact removal to develop approaches with higher EOG 
rejection specificity. 
 
Keywords: Electroencephalogram eye tracking, Deep learning, Independent component analysis, Electrooculogram, LSTM. 
 

 
1. Introduction 
 

Electroencephalography (EEG) is a non-invasive 
neuroimaging technique used to record the electrical 
activity generated by the brain. EOG 
(electrooculogram) artifacts in EEG recordings refer to 
the electrical signals generated by eye movements and 
eye blinks due to the potential difference between the 
cornea and the retina, which acts as an electric dipole. 
When the eyes move, their dipoles also move, 
generating a change in the field of electric currents 
propagating instantaneously (quasistatic 
approximation [1]) through the volume of the head and 
reaching the EEG electrodes [2]. Thus, EOG artifacts 
are omnipresent in EEG signals. They usually account 
for much of the EEG variance, particularly in the 
channels near the eye. These artifacts are particularly 
problematic in EEG tasks requiring eye movements, as 
they can obscure the neural activity related to the 
experimental task. Therefore, developing techniques 
for removing EOG artifacts with high specificity is 
critical for EEG research, particularly for analyses of 
frontal connectivity involving non-lagged homotopic 
synchronization, which cannot be reliably 
distinguished from instantaneous electrical volume 
conduction [3]. 

Various techniques have been proposed to separate 
and remove the artifactual components from the neural 
components of the EEG signals. Among that class of 
algorithms, Independent Component Analysis (ICA) 

has become arguably the most widely adopted 
approach [4] and is used in most EEG preprocessing 
pipelines [5, 6]. However, although this approach has 
the benefit of retaining the complete EEG time course, 
it may fail to remove all the artifacts (insufficient 
sensitivity) or may distort the neural signals 
(insufficient specificity). Since ICA is an unsupervised 
algorithm, confirming that the components labeled as 
artifacts do not include neural signals is challenging, 
and some neural signals can inadvertently and 
unknowingly be lost when these components are 
subtracted from the EEG data. 

While ICA can be used to identify and remove 
various artifacts (EOG, ECG, power line noise), 
alternative artifact reduction techniques for removing 
EOG artifacts specifically exist. For example, EOG 
channels from electrodes placed near the eyes can be 
used in a linear regression to estimate the 
corresponding EOG artifact in EEG channels, which 
can then be subtracted from the signal [7, 8]. However, 
EOG electrodes differ from EEG electrodes only in 
their placement near the eyes. Thus, they also pick up 
neural signals or other types of artifacts (e.g., muscle 
contraction, sweating), which diminishes their utility 
as a reference signal for EOG activity. 

In this study, we aim to use deep learning to remove 
EOG artifacts in an EEG/eye-tracking (ET) dataset and 
compare the performance of this approach to ICA, the 
most prominent approach for EOG removal. 

 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

39 

2. Methods 
 
2.1. Datasets 
 

To develop and test the proposed model, we 
leveraged the EEGEyeNet dataset [9]. This dataset 
contains recordings from 356 healthy adults, including 
simultaneously collected high-density 129-channel 
EEG data synchronized with video-infrared ET. The 
ET data include two channels for the position in X and 
Y and one for the pupil size. Both raw and 
preprocessed data are available in the EEGEyeNet 
dataset. The experiment contains three tasks: a pro- and 
antisaccade task, a visual symbol search task, and the 
Large Grid task. For our study, we used the latter [10]. 
For this task, 30 participants were asked to look at dots 
appearing at 25 different positions, distributed across 
the whole surface of a screen (see Fig. 1). Each dot is 
presented for 1.5 to 1.8 seconds, in a  
pseudo-randomized order (see [9] for details on this 
pseudo-randomization). The central dot was displayed 
three times, while the other dots were presented once 
per block. Each of the six runs contained five blocks, 
totaling 810 stimuli per participant. Each run is saved 
as a separate recording, providing 177 recordings (i.e., 
three were missing). 

 

 
 

Fig. 1. Positions of presented dots during the Large Grid 
task (blue/red circles) overlayed with the gaze distribution. 

 
 

2.2. Outlier Rejection 
 

Before running analyses, we excluded recordings 
with noisy or unreliable ET data, which could have 
been due to many reasons, the most likely being poor 
eye-tracker calibration. We identified outliers by first 
computing the mean squared difference between the 
event-related response (ERR) of every recording and 
the ERR averaged across recordings 

 ݁ = (ܺ − ܺ	ഥ )ଶതതതതതതതതതതതതതത௧,	 (1) 

 
where ܺ is a matrix of ݔ and ݕ gaze coordinates, and 
the bars with ݎ and ݐ represent the averaging across the 
recording and time dimensions, respectively. We 

computed these errors for each ET channel, dot stimuli, 
and recording. We then computed the 25th, 50th, and 
75th quantiles of the distribution of these errors. To 
detect outliers in individual recordings, we used the 
classic outlier rejection formula, ݁ > ܳହ + ݇(ܳହ −ܳହ) with ݇ = 6, and rewrote  
 ݁ − ܳହܳହ − ܳହ > ݇	 (2) 

 
to average the left-hand term across channels and dots 
(i.e., event types) before comparing these averages 
against the threshold. Using this outlier criterion, we 
excluded eight recordings from further analyses. Most 
of them were for different runs from the same 
participant. 

We confirmed participant compliance with the 
Large Grid Task instructions and the quality of the ET 
data for the remaining recordings by displaying the 
two-dimensional kernel density estimation of the 
distribution of the X/Y pixel coordinates for every dot 
in the large grid (Fig. 1). For this computation, we 
determined the gaze position as the average position in 
the ݐ ∈ [0.3, 1.0]	s time window, with ݐ = 0 being the 
stimulus presentation onset. 

 
 

2.3. Preprocessing 
 

Minimally and maximally preprocessed versions of 
the EEGEyeNet dataset are available [11]. These two 
alternative preprocessing are defined by the Automagic 
toolbox [12]. We used the minimally preprocessed 
version, which includes bad channel detection and 
interpolation and EEG filtering to the 0.5-40 Hz band. 
This minimal preprocessing does not include ICA 
artifact rejection since this step would remove the EOG 
artifacts necessary for our study. The authors of 
EEGEyeNet synchronized the EEG and ET signals and 
confirmed the absence of synchronization errors 
exceeding 2 ms. 

To make our analysis more computationally 
efficient, we filtered to the 1-30 Hz band before 
downsampling the signals to 100 Hz using  
MNE-Python [13]. Although the dataset is recorded 
with a sampling rate of 500 Hz, EOG signals are 
limited to relatively low frequencies due to natural 
biomechanical constraints imposed on the kinematics 
of eye movements. Thus, such a high sampling rate 
significantly increases the network size (i.e., multiply 
by a factor of five the long short-term memory (LSTM) 
input shape and the associated weights to learn) 
without adding relevant information. 

For machine learning, recordings were epoched 
into contiguous 1 s segments (this should not be 
confused with the concept of training epochs in deep 
learning), resulting in a 3D matrix of size nsegments × 
nchannels × ntimes. We also set an average reference. For 
our comparison with ICA, we used the Extended 
Infomax approach [14] as implemented in  
MNE-Python. EOG-associated components were 
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detected automatically as those labeled as eye blink by  
MNE-ICALabel [15], which ports to Python the 
functionalities of ICLabel [16]. ICLabel has six 
additional classes of independent components: brain, 
muscle artifact, heartbeat, line noise, channel noise, 
and other. 

 
 

2.4. Deep Learning Model 
 

The overarching idea of our approach is to train a 
recurrent neural network (RNN) to predict EEG 
signals only from ET signals. Of course, only a small 
portion of the EEG signals will be predictable from ET 
signals, and this predictable portion will be due to EOG 
artifacts and potentially some neural and non-neural 
correlates of eye movements (e.g., electromyographic 
signals due to the activation of the muscle required for 
eye movements). More formally, for the EEG signal 
matrix ܻ (EEG channels × time) and the ET matrix ܺ 
(ET channels × time), we model this relationship as ܻ = ݂(ܺ) + 	ܴ where ܴ  is a residual matrix containing 
the neural signals and potentially non-eye-movement-
related artifacts, and ݂ is a nonlinear function we want 
to learn by adjusting the RNN weights to minimize the 
mean square amplitude of ܴ. For this task, we used a 
2-layer LSTM with three features corresponding to ET 
channels and 64 hidden states whose outputs get 
pruned with a 0.5 dropout layer. A final fully 
connected layer maps the LSTM internal states to  
129 outputs corresponding to the EEG channels  
(Fig. 2). We implemented this model in PyTorch and 
fitted it using the ADAM optimizer with a  
0.01 learning rate and a mean-square-error (MSE) loss 
function. We found that 1000 training epochs (not to 
be confused with the EEG 1 s epochs) were enough to 
reach a stable training loss. We did not attempt to test 
for generalizability across participants or recordings. 
Rather, we wanted to test if the mapping between ET 
signals and their impact on EEG was learnable within 
participants. Thus, we implemented no hold-out or 
cross-validation. That is, the mapping was learned 
independently for all 177 recordings, and we used each 
of these mappings to clean the EEG of the 
corresponding recording only. 

 
 

2.5. Analysis 
 

EOG signals are known to affect mostly frontal 
EEG channels. To validate the capability of the neural 
network to detect and remove EOG noise, we 
computed the percentage of signal removed per 
channel as  

߂  = 1 −	ܴܻ	 (3) 

 
We also defined the reaction time (RT) to a 

stimulus as the moment the gaze position changed by 
5 % of maximal response amplitude. Using this RT, we 
used an approach similar to the one adopted in [17] to 

characterize the sensitivity and specificity of removing 
eye artifacts based on ET versus automated ICA. In 
this approach, we defined a pre-reaction time (pre-RT) 
segment where we expect no noise, here defined as the 
window from the start of the baseline period (-0.2 s) to 
the reaction time (RT), and a post-RT window where 
EOG artifacts are expected (RT to 1 s). Defining the 
signal (ܵ) as the root mean square (RMS) amplitude of 
the original recording (ܻ) and the noise (ܰ) as the RMS 
amplitude of what has been removed by the artifact 
removal approach (i.e., ܰ = ܻ − ܴ), we can define the 
classic measure of signal-to-noise ratio (SNR) in dB as  

 ܴܵܰ = 10 ∙ ݈ ଵ݃ ൬ ܵܰ൰	 (4) 

 
A large SNR before the reaction time is indicative 

of a high specificity (i.e., clean signals do not get 
distorted by artifact removal), and a low SNR after the 
reaction time is indicative of a good sensitivity (i.e., 
more noise has been detected and removed by the 
cleaning approach). 

 

 
 

Fig. 2. The deep neural network we designed for EOG/EEG 
decounfounding. a) Block diagram and corresponding 
equations for the LSTM model used in the deep neural 
network. In the equations, ⊙ stands for the Hadamard 
product, ߪ is the sigmoid function, lowercase letters are 
vectors, and uppercase letters are matrices. The matrices ܹ 
and vectors ܾ are learned during the training, b) Deep neural 
network architecture using two LSTM layers and one fully 
connected layer. 

 
 

3. Results 
 

A demonstration of cleaned EEG signals using the 
proposed model and ICA compared to the original 
EEG signals is shown in Fig. 3. 

Further, evoked responses to gazes at dots confirm 
that the model accurately removes the EOG 
contamination in the EEG recordings (Fig. 4). 

We also looked at the distribution of the predicted 
noise over the scalp (Fig. 5), averaged across 
participants. This distribution clearly shows the bias 
toward frontal regions, with about 70 % of the 
amplitude of the recorded signals in prefrontal and 
frontal channels being due to EOG artifacts. Further, 
the proposed model predicted less EOG in the pre-RT 
period than ICA. The fixation of the participants' gaze 
during the period preceding the apparition of a 
stimulus (see the bottom right panel of Fig. 4 for an 
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illustration of this) suggests that the proposed model 
distorts the EEG signals less than ICA. 

 

 
 

Fig. 3. Top panel: EEG signals for a typical recording  
before (gray) and after EOG artifact reduction using  
the proposed model (green) and ICA (blue). Bottom panel: X 
and Y gaze positions (reported in pixel coordinates) during 
the same period as the top panel. 

 

 
 

Fig. 4. The evoked response to dot 25 before and after EOG 
removal (top panel) and the average eye movement (X/Y 
pixels) during those trials (bottom panel). The vertical red 
dashed line represents the average RT across participants, 
corresponding to the moment they began shifting their gaze 
toward the dot displayed at the beginning of the trial (i.e.,  
at ݐ = 0 s). 

 
Next, we used the evoked EEG time series 

(averaged for each dot) before and after EOG artifact 
reduction to test the sensitivity and specificity of the 
proposed deep learning model and ICA. In Fig. 4, we 
can observe that the deep learning model seems more 
conservative in EOG reduction than ICA and distorts 
signals less in the pre-RT period. To quantify the 
specificity and sensitivity of the proposed model for 
reducing EOG artifacts, we computed the SNR as 
described in (4). The averaged SNR values for the pre-

RT (specificity) and post-RT (sensitivity) periods 
within subjects (across runs) and computed a paired t-
test to compare the SNR values for the proposed model 
versus ICA. Fig. 6a illustrates an example of this 
approach for channel E25 and dot 25. For this 
combination of channel and dot, the average values for 
the Model and ICA indicate a higher specificity for the 
model but a higher sensitivity for ICA. We repeated 
this process for all channels and dots and aggregated 
the result on topomaps for specificity (Fig. 6b) and 
sensitivity (Fig. 6c). The results suggest that this 
tendency toward higher specificity but lower 
sensitivity for the model compared to ICA can be 
generalized across the scalp, except for a higher 
sensitivity of the model in the posterior region  
of the scalp. 

 

 
 

Fig. 5. Topographic plots showing the spatial projection  
of the predicted EOG signal (across participants), as 
predicted by the model (top row) and by ICA (bottom row). 
The spatial projection is shown for the pre-RT period (left 
column) and the post-RT period (right column). We used 
only trials for dot for this figure. 

 

 
 

Fig. 6. Performance of our approach based on eye-tracking 
signals (ET) versus ICA, a) Example of analysis  
of sensitivity and specificity for a specific channel (E25,  
a frontal channel) and dot 25, b) Comparative performance 
of the specificity for the two approaches across the scalp.  
For each channel and dot, specificity is determined  
as illustrated in panel a. SNR values are then averaged  
within subjects (across runs), and a paired t-test is computed 
to compare the SNR values for ET vs ICA. We counted +1 
when the specificity was larger for ET than ICA, -1 when it 
was smaller, and 0 when it was not statistically different  
(p > 0.05). The sum of these scores is computed across  
the 27 dot conditions and displayed as a topomap, c) Same 
as for b, but for sensitivity. 
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4. Discussion 
 

This study demonstrated a novel approach for EOG 
artifact rejection in EEG signals recorded 
simultaneously with ET. The code implementing this 
approach is available on GitHub 
(https://github.com/lina-usc/eog-learn). The 
emergence and popularization of such recordings [18] 
has opened new possibilities by providing reference 
signals closely associated with EOG generation. One 
of the constant challenges of EOG rejection is the 
absence of a ground truth for evaluating the 
effectiveness of proposed approaches. This common 
situation limits the options available to investigators to 
1) using synthesized recordings with a known ground 
truth but questionable face and ecological validity or 
2) using recorded EEG with unknown ground truth. 
The addition of ET data, although not providing 
ground truth for EOG artifacts per se, partly mitigates 
this thorny issue by providing reliable information on 
eye motions usable for inferring EOG artifacts. 

Leveraging these signals, we adopted a data-driven 
black-box approach to EOG artifact removal from 
EEG signals. The data-driven qualifier in this 
statement comes from using ET signals and deep 
learning to empirically map the association between 
the movement of the eyes and its impact on EEG 
signals. We use the black-box qualifier to contrast with 
an approach using ET signals and a physiological 
model of how eye movements generate EOG artifacts. 
Our approach does not consider any knowledge 
specific to the application at hand. The solution relies 
on the generic task of learning an arbitrary relationship 
between an input and an output given enough data. 
This task can be addressed by deep neural networks, 
which have been shown to work as universal function 
approximators [19]. Because of the adoption of a 
generic solution, conceptually, this approach may be 
suitable for other applications (e.g., removal of 
electrocardiogram artifacts in EEG, correction for the 
effect of motion on electrocardiogram signals), as long 
as the source of the contamination is due to a process 
for which we have a separate reference signal. 

Crucially, the approach we adopted provides an 
opportunity to assess the performances of blind source 
separation conducted with ICA more objectively. This 
technique currently dominates the field [4]. It has been 
shown to perform well in general, and our analyses 
support this position in many ways. However, ICA for 
EOG rejection is known to have limitations [17]. More 
importantly, although its capacity to remove EOG 
artifacts can be readily evaluated on noisy EEG signals 
(e.g., see Fig. 3), the degree to which it may distort 
neural signals is more difficult to establish. For 
example, ICA tends to distort the phase of EEG signals 
[20, 21], a key element in neural dynamics and a 
property essential for all functional connectivity 
metrics based on phase consistency (e.g., coherence, 
phase locking value, phase lag index). Our experiment 
demonstrated that eye movement information can be 
used to remove EOG artifacts effectively while 

distorting neural signals significantly less. Although 
the lack of a ground truth creates some uncertainty in 
the interpretation of the SNR-based measures of 
sensitivity and specificity, our approach has shown a 
much higher specificity than ICA. In general, ICA has 
shown a higher sensitivity. However, since we do not 
have the ground truth for the effect of eye movements 
on the EEG, we cannot rule out the possibility that the 
apparent superior sensitivity of ICA in post-RT 
windows could also be partly due to an over-correction 
of ICA. 

Interestingly, our approach was more sensitive to 
parts of the scalp that typically are less impacted by 
EOG artifacts (i.e., central/occipital regions; see  
Fig. 6c). Our comparison with ICA relied on the 
automated classification of independent components 
associated with eye movement artifacts. The classifier 
we adopted (i.e., ICLabel) has been designed using 
machine learning and a large dataset of independent 
components annotated by experts. This classification 
is, therefore, vulnerable to biases associated with our 
understanding of the topological appearance of EOG 
artifacts. EOG artifacts are known to have the most 
impact on the frontal region. However, although 
electrical dipoles generated close to the forehead may 
have their strongest effect on that part of the scalp, 
their field wraps around virtually the whole head (with 
decreasing amplitude due to attenuation). Our results 
suggest that independent components selected for 
rejection may tend to undercorrect for these more 
distant effects. This observation highlights the most 
significant contribution of this approach: using ET to 
assess the impact of eye movement on EEG may 
provide us with a more reliable and objective 
assessment of EOG artifact topography. We can then 
use this assessment to develop new methods or correct 
existing methods that do not require the availability of 
ET data. 

 
 

5. Limitations 
 

The need for synchronized EEG and ET recordings 
constitutes the most obvious limitation of the approach 
we proposed in this paper. However, although we may 
use this approach directly to clean EEG in such 
datasets, this application was not the main reason for 
this study. We would argue that using such a dataset to 
develop methods that can highlight the limitations of 
current techniques and suggest possible ways to 
remedy these shortcomings without requiring ET data 
is of greater interest. We focused our comparisons on 
the automated ICA approach because of its popularity 
for EOG removal. 

For our specific application, we attempted to learn 
the predictable part of the EEG based on ET 
information. This part is arguably a minor portion of 
the EEG makeup. The learning task is, therefore, 
complicated by the relatively low percentage of 
predictable information in the signals. We 
demonstrated that even with a relatively small amount 
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of data (i.e., single recordings), it is possible to learn 
that relationship with a satisfying degree of precision. 
However, we could possibly improve the sensitivity 
and specificity of EOG removal by using a larger 
training set. The degree to which the performance is 
saturated with the current size of the training data  
is unknown. 

The data used for this study (i.e., looking at many 
predefined targets on a screen) were particularly  
well-suited for our analysis and for learning the 
mapping between eye movement and EOG artifacts. 
However, we used information on the structure of the 
task only for performance analysis. Our training did 
not rely explicitly on the properties of the experimental 
protocol (i.e., the whole recording was segmented in 1s 
epochs and passed to the training routine without any 
information on the stimuli). However, implicit 
characteristics (e.g., the systematic coverage of the 
whole screen area by eye movements) may have been 
beneficial. 

It is also worth considering that the relationship 
learned between eye movement and the predictable 
part of the EEG is made up of various contributions, 
including a component due to the artifact generated by 
the movement of the eye (the component we generally 
want to remove) and the neural activity systematically 
correlated with the eye movement, such as the neural 
signals controlling the movement of the eye and the 
neural activity created by the change in visual stimuli 
when the line of sight shifted. Analysts may or may not 
want to remove these latter components depending on 
the hypotheses under investigation. The approach 
considered in this study cannot disentangle these 
different components. However, it offers a powerful 
framework for investigating these components, for 
example, by using virtual reality to experimentally 
control changes in the visual field as a function of eye 
movement. 

Lastly, we decided in this study to perform learning 
and testing on single recordings. One advantage of this 
approach is that it is constrained to the recordings 
themselves (e.g., it is independent of the subject 
sample size). This approach is, therefore, tailored to the 
specificity of the participants (e.g., the specific shape 
and electrical properties of the head of the participant 
affect how electrical currents generated by the 
movement of the eyes travel and are recorded by the 
EEG system) and of the recording (i.e., effects of the 
experimental protocol, environment factors, etc.). 
Thus, our study did not aim for the generalizability and 
reusability of these deep learning models. Future work 
could consider training a single model across a large 
sample to target generalizability and reusability. It is 
also possible that by benefiting from a larger sample 
for training, the mapping learned would be more 
precise. Whether the gain obtained from training 
across subjects would offset the loss of precision due 
to interindividual and within-individual/between-
recordings variability is currently unknown. 
Alternatively, pretrained models may provide an 
advantageous middle ground. 

 

6. Conclusion and Future Works 
 

We presented a deep-learning approach that 
leverages ET information in synchronized EEG/ET 
recordings to remove EOG artifacts from EEG 
recordings. Most importantly, we demonstrated how to 
harness this objective source of information to 
benchmark existing approaches and better understand 
their limitations. In future works, we plan to address 
the limitations associated with this black-box approach 
by designing a generative model of how EOG artifacts 
are generated from eye movements relying on 
physiological knowledge. Provided that 1) we dispose 
of enough information to develop a faithful generative 
model of EOG artifact from measurements of the eyes 
position and 2) given that precise ET information is 
available, this source of artifact could be removed 
accurately from the EEG. Furthermore, in combination 
with the approach we presented here, the EOG and the 
neural component associated with eye movements 
could then be disentangled, allowing more precise 
analyses of neural activity. 
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Summary: Global Navigation Satellite Systems (GNSS) provide absolute positioning for a wide range of applications. 
However, their performance can be severely degraded due to multipath and Non-Line-of-Sight (NLOS) receptions caused by 
surrounding environments, particularly in urban canyons. The traditional statistic-based mitigation methods encounter 
bottlenecks since the errors from these local effects are difficult to model accurately using existing distributions. To handle 
this issue, this paper proposes a deep-learning framework to estimate the additional distances of the range measurements caused 
by NLOS receptions. The customized architecture involves four main modules: a non-linear data transformation to rescale the 
data, a channel attention mechanism to weigh different features, a generative Convolutional Neural Network (CNN) network 
to augment the feature map, and an inception module to enhance the feature extraction from a multi-hierarchical level. The 
model was trained and tested with real urban GNSS data, which shows promising results, achieving an RMSE of 6.76 m and 
a 75 % prediction error of 0.71 m, demonstrating higher accuracy than the current state-of-the-art. 
 
Keywords: GNSS, NLOS, Error modeling, Deep learning. 
 

 
1. Introduction 
 

Global Navigation Satellite Systems (GNSS) are 
widely used across various sectors, from entertainment 
to safety and reliability critical applications. GNSS 
positioning algorithms rely on measuring the signal 
Time-of-Arrival (ToA) between the satellite and the 
receiver to determine the range and use trilateration to 
estimate the user's position. However, GNSS range 
accuracy is often degraded in urban environments due 
to multipath and Non-Line-of-Sight (NLOS) caused by 
signal reflection and diffraction from surrounding 
obstacles. This can lead to huge positioning errors 
which is harmful for many critical location-based 
applications. 

Traditional methods detect and exclude faulty 
GNSS measurements based on consistency checks, 
which have limitations in harsh urban scenarios. On the 
one hand, when the majority of the satellite 
measurements are erroneous, which is frequent in 
urban, healthy satellites could be wrongly excluded. 
On the other hand, excluding satellites can worsen the 
already limited satellite visibility in urban areas, 
leading to poor Dilution of Precision (DOP) and 
further degrading GNSS performance. 

That is why, another key research branch focuses 
on fault detection and weighting instead of exclusion. 
De-weighting faulty measurements can effectively 
reduce the impact of errors in filter propagation while 
maintaining optimal satellite geometry. However, the 
basic signal Quality Indicators (QI), such as Signal to 
Noise Ratio (SNR) and satellite elevation, become less 
effective in urban scenarios since they do not fully 
capture observation quality. 

Our goal is to go beyond current limitations by 
repairing GNSS NLOS errors. By estimating and 
removing the additional distance caused by NLOS 
reception, the erroneous measurements can be repaired 
and used efficiently. The objective of this paper is to 
design a customized deep learning-based framework to 
estimate the additional range caused by NLOS. The 
main contributions of this paper are as follows: 

1) Propose a deep learning architecture leveraging 
channel attention to weight features, a 
Generative Convolutional Neural Network 
(GCNN) network to augment and enrich the 
feature map, as well as an inception module to 
enhance the feature extraction from a  
multi-hierarchical level; 

2) Train and evaluate the model performance on 
real data collected in urban scenarios. 

The remainder of the paper is organized as follows: 
Section 2 presents the related state-of-the-art research. 
The proposed methodology is presented and evaluated 
respectively in Section 3 and Section 4. Section 5 
draws conclusions and future work. 
 
 
2. State-of-the-art 
 

GNSS multipath and NLOS error modeling 
approaches can be classified into two categories: 
model-based and data-driven. Traditional statistical 
model-based approaches focus on bounding 
measurement errors with known distributions 
modulated by certain signal QIs. The most common 
ones are based on Gaussian distribution while inflating 
the variance as a function of signal-in-space ranging 
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errors (SISRE), C/N0 [1-2], satellite elevation [3], 
pseudorange residuals or code-minus-carrier 
observables (CMC) [4]. Better performances can be 
obtained by hybridizing multiple indicators including 
LOS/NLOS information from the map data, as shown 
in [5]. However, these models require proper 
calibration according to the specific receiver and 
environment. New QIs are considered leveraging the 
GNSS pseudorange residual from different time slots 
[6] or the probability of NLOS reception predicted by 
machine learning models [7]. Besides, some Bayesian 
approaches are proposed in the literature to model the 
GNSS multipath error. [8] leveraged Dirichlet Process 
Mixture (DPM) to model the GNSS measurement 
errors, extending the problem to non-Gaussian and 
nonlinear situations. However, the implementation 
complexity as well as the hyperparameter optimization 
for the DPM become non-negligible issues. 

Recently, more and more data-driven approaches 
have emerged to address GNSS multipath and NLOS 
receptions in stringent urban environments. The 
majority of them are designed for signal classifications 
using Support Vector Machine (SVM) [9], CNN [10], 
Gradient Boosting, LSTM [11] and their ensembling 
method [12] are implemented to classify 
LOS/NLOS/multipath. The features are extracted from 
different levels, from the correlator to the raw 
measurement level. [13] provided a review for  
ML-based GNSS multipath mitigation and 
implemented a Fully Connected Neural Network 
(FCNN) to benchmark on open access data. The 
overall classification accuracy varies from 70 % –  
98 % depending on the testing scenarios and data size. 

Besides, some research focuses on AI-based 
multipath or NLOS error regression. [14] proposed a 

CNN-based method by converting correlator outputs 
into images to estimate multipath parameters. Tests on 
synthetic data show satisfactory results for attenuation 
coefficient, code delay and difference in Doppler shift 
but the estimation of phase difference still needs to 
improve. [15] proposed an LSTM network to estimate 
directly the weights allocated to each satellite showing 
improvement in positioning accuracy using real data. 
[13] made a benchmark using FCNN to predict the 
pseudorange error with a final RMSE of 15.14 m. The 
challenges remain on how to properly design the 
architecture of the AI model to fully leverage the 
potential of the features and to make the model robust 
and generalizable for different cities. 
 
 
3. Methodology 
 

The proposed deep-learning framework is 
composed of four main modules: data non-linear 
transformation, channel attention, feature 
augmentation, and an inception-based deep regressor. 
The global architecture is illustrated in Fig. 1. The 
following seven basic GNSS features are used as input: 
pseudorange, carrier phase, Doppler, SNR, satellite 
elevation, azimuth, epoch-wise Normalized 
Pseudorange Residual (NPR). The NPR can be written 
as follows: 
 

 ܴܰܲ = ோିோோೌೣିோ, (1) 

 
where ܴܲ is pseudorange residual at epoch ݅, ܴܲ௫ 
and ܴܲ represent respectively the maximum and 
the minimum pesudorange residuals at each epoch. 

 
 

 
 

Fig. 1. Architecture of the proposed channel attention and inception-based CNN network. 
 
 

3.1. Non-linear Quantile Transformation 
 

A quantile transformation is applied for data 
preprocessing to make different features comparable 
and to ensure the model learns the intrinsic patterns of 
the data instead of their ranges. Here, the original 
values of the features are mapped to a Gaussian 
distribution while the outliers are mapped to the 
boundaries of the distribution. 
 
3.2. Channel Attention 

 
Channel attention is originally designed for image 

processing, especially in CNN to capture the most 

important features across different channels [16]. Here 
we have adapted the channel attention to our scenario 
as shown in Fig. 2, to allocate different weights to 
features while enhancing the network’s ability to learn 
complex patterns. First, a Global Average Pooling 
(GAP) and a Global Max Pooling (GMP) are applied 
to obtain the global information of the input feature 
vector with the dimension of 1 × 7. The outputs of the 
pooling layers, i.e., ܨ௩ and ܨ௫, are concatenated 
together then pass through a shared Multi-layer 
Perception (MLP) and a sigmoid activation function. 
Finally, the attention weight vector is obtained and 
multiplied by the original features. 
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Fig. 2. Channel attention mechanism applied on GNSS 
single channel feature map. 

 
 
3.3. Feature Augmentation 
 

Considering the sensor noises, potential 
perturbations on the feature values as well as the 
limited number of features, we propose here to use a 
generative CNN-based network to augment the input 
feature. As shown in Fig. 1, the feature augmentation 
module is composed of several convolutional and 
upsampling operations layers, which gradually 
augment the 1D feature vector into 2D feature map. A 
leaky Rectified Linear Unit (LeakyReLU) activation 
function is applied at the end of each layer, which is 
calculated as follows: 
 

(ݔ)	ܷܮܴ݁ݕ݇ܽ݁ܮ  = ቄ ݔ	݂݅	ݔ >  (2) ,݁ݏ݅ݓݎ݄݁ݐ	ݔߙ0

 
where ߙ is a small constant representing the slope for 
negative input, here ߙ = 0.01. Compared to the 
traditional ReLU activation function, LeakyReLU 
provides a small, non-zero gradient for negative inputs 
to prevent “dying neurons” where the gradient 
becomes zero and the neuron stops learning. 

At the end of the feature augmentation module, the 
original 1D feature vector with size 1 × 7 is 
augmented into 2D feature map whose size is 28 × 28. 

 
 
3.4. Deep Inception-based Regressor 
 

The reconstructed feature map is then fed into an 
inception-based regressor. As shown in Fig. 3, the 
proposed inception architecture is composed of 
convolution layers with different depths. The structure 
is inspired by [17] but is different from it because the 
final output is the sum of the outputs from different 
convolution paths instead of the concatenation. The 
operation allows feature extraction from different 
hierarchical levels to enhance the robustness and the 
generalization ability of the model. 

 
 

4. Performance Evaluation 
 

4.1. Experimental Setup 
 

The dataset was collected with a GNSS receiver 
(Ublox LEA 6T) mounted on the roof of an 

experimental vehicle in the urban area of Nantes, 
France. The ranges of additional distances of the 
NLOS signals are labeled by a ray-tracing technique 
using highly accurate ground truth and city 3D models. 
The dataset has a total of 17903 epochs with  
130073 observations, which is split into 80 % for 
training and 20 % for testing. 

 

 
 

Fig. 3. Proposed inception module for regression, which 
fosters the multi-scale feature extraction. 

 
Prediction Accuracy Assessment 
 

The performance is evaluated based on prediction 
error, which is defined as follows: 

 
ݎݎݎܧ݀݁ݎܲ  = ݕ −  ො, (3)ݕ

 
where ݕ represents the true value of the range 
additional distance at the epoch ݅, ݕො represents the 
predicted range additional distance using one  
AI model. 

The model is trained in two modes: one using all 
signals, including both LOS and NLOS, and the other 
using only NLOS signals, assuming an upstream signal 
classifier is present so only the additional range 
distances from NLOS are trained and predicted. 

The following assessment criteria are used: Root 
Mean Square Error (RMSE), Mean Absolute Error 
(MAE), the coefficient of determination ܴଶ (the closer 
to 1, the better) as well as the 75 % and 95 % of the 
absolute error. The proposed framework is 
benchmarked with the Extreme Gradient Boosting 
(XGB) optimized by the Optuna optimizer as well as a 
simple Multi-Layer Perceptron (MLP). The 
implemented MLP is composed of two Fully 
Connected (FC) layers, both with the same 
dimensions: an input size of 7 and an output  
size of 150. 

Fig. 4 shows the CDF comparison of the absolute 
prediction error with the benchmark methods and 
proposed method respectively for the whole test data 
and the NLOS-only test data. Table 1 summarizes the 
corresponding statistics. The proposed method 
achieves a global better regression performance than 
the XGB and MLP, with an RMSE of 6.76 m for LOS 
/ NLOS together and 8.10 m for NLOS-only data. 
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Fig. 4. CDF of absolute prediction error for the whole test 
data and NLOS-only test data using XGB  

and the proposed method. 

4.3. Ablation Study 
 

To further evaluate the effectiveness of the 
proposed architecture, an ablation study is done 
particularly on the impact of feature selection as well 
as the attention mechanism. 

The following alternate feature sets are considered 
for comparison with the proposed 7-feature set: 

− A most commonly used 3-feature set from  
state-of-the-art research [13, 18] including 
pseudorange residual, SNR and satellite 
elevation; 

− A 5-feature set including SNR, NPR, CMC, LT 
and the number of satellites. 

Table 2 summarizes the performance statistics 
using different feature sets, where the proposed  
7-feature set achieves the best performance. 

 
 

Table 1. Model Prediction Error Comparison on Test Data. 
 

Data Method 
RMSE 

[m] 
MAE 
[m] 

AE 50 % 
[m] 

AE 75 % 
[m] 

AE 95 % 
[m] 

R2 [m] 

LOS & NLOS 
XGB 8.72 2.63 0.06 1.85 11.26 0.66 
MLP 7.99 3.74 1.91 5.10 16.35 0.51 

Proposed 6.76 1.74 0.01 0.71 8.94 0.74 

NLOS-only 
XGB 10.05 3.48 2.40 5.95 23.11 0.55 
MLP 12.37 7.14 4.41 8.91 25.37 0.48 

Proposed 8.10 2.53 1.12 3.65 17.78 0.65 
 
 

Table 2. Prediction error comparison using different  
feature sets. 

 

Data Feature set 
RMSE 

[m] 
MAE 
[m] 

LOS & NLOS 

3-feature set 10.33 3.31 
5-feature set 10.29 3.43 
Proposed 7-
feature set 6.76 1.74 

NLOS only  

3-feature set 14.57 6.08 
5-feature set 14.46 6.77 
Proposed 7-
feature set 8.10 2.53 

 
To study the impact of the attention mechanism, we 

compare the model performance with and without this 
module. Table 3 presents a summary of the prediction 
performance with and without the attention 
mechanism. It shows that excluding the attention 
mechanism results in an approximate increase of 0.2 m 
in overall RMSE and MAE for both LOS & NLOS data 
as well as NLOS-only data. 

These ablation studies highlight the effectiveness 
of the proposed methodology, particularly in feature 
set selection and architecture design. 

 
 

5. Conclusion and Perspectives 
 

This paper proposed a customized deep learning 
architecture that is designed based on the 
characteristics of the GNSS data to predict the error 

caused by local effects such as NLOS and multipath. 
The network includes a channel attention module to 
highlight important features, a generative CNN 
module to further augment existing features, and an 
inception-based regressor to make the NLOS error 
estimation. In this way, only using seven most basic 
features, the network is able to regress the range error 
accurately. Testing results on real data collected in 
urban environments show that the RMSE of the 
proposed architecture can achieve 6.76 m and a 75 % 
absolute error of 0.71 m while these metrics using 
XGB are respectively 8.72 m and 1.85 m, and using 
MLP are respectively 7.99 m and 5.10 m. 

 
Table 3. Ablation study of the attention mechanism. 

 

Data Configuration 
RMSE 

[m] 
MAE 
[m] 

LOS & NLOS 

With Attention 
Mechanism 

6.76 1.74 

Without 
Attention 

Mechanism 
6.92 1.97 

NLOS only 

With Attention 
Mechanism 

8.10 2.53 

Without 
Attention 

Mechanism 
8.37 2.61 

 
Future work remains on testing and improving the 

robustness and the generalization ability of the model 
on different city configurations. 
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Summary: This paper proposes a system for early plant leaf disease detection using highly sensitive THz sensors and digital 
signal processing. Pathogens, such as fungi, bacteria, viruses, and environmental stressors, usually cause infections of the 
plants and damage their leaves. They strongly influence plant health, yield, and overall aesthetic value. They are usually 
directly correlated with changes in the dielectric constant of leaf tissues and moisture, which is known to have a strong 
absorption coefficient for THz radiation. This phenomenon leverages THz radiation's unique, non-invasive interaction with 
water molecules and plant tissues. We developed and manufactured our low-cost, highly sensitive THz sensors. The article 
describes some examples of practical usage of these sensors in biology. We will show that the amount of leaf water content or 
internal leaf moisture for different leaf areas can be easily detected with a THz camera and displayed as a grayscale image 
using some digital signal processing. Combining optical and THz images of the leaf can mitigate the risk of infections and 
promote overall plant health. 
 
Keywords: Leaf disease, THz rays, THz sensor, Spectral signature in THz range, THz camera. 
 

 
1. Introduction 
 

This paper proposes a system for early plant leaf 
disease detection using several highly sensitive THz 
sensors assembled in a portable THz camera working 
at room temperature. The sensor array uses digital 
signal processing (DSP) to display a THz image of the 
leaf in almost real-time as a grayscale image. Light 
gray represents dry areas, and darker gray represents 
water-soaked areas. 

This approach is novel since, for the time being, 
THz technology is not widely used in agricultural 
diagnostics. Most existing plant disease detection 
methods rely on optical, infrared imaging, or 
hyperspectral analysis. The latter operates in the 
visible to near-infrared spectrum, while THz waves 
can penetrate certain materials and offer insights into 
subsurface features like detecting moisture reach areas. 
Hyperspectral imaging is surface-sensitive and relies 
only on emitted or reflected light from the surfaces. 

Types of leaf diseases are generally divided into 
four typical classes: physiological disorders, fungal, 
bacterial, and viral diseases. Internal leaf moisture 
plays a critical role in developing many leaf diseases. 
On the other hand, diseases and stress cause typical 
structural and biochemical changes in leaf tissues. 
These changes usually produce distinct spectral 
signatures in the THz detection range. 

THz waves are electromagnetic waves between 
microwaves and infrared light in the frequency range 
of 0.1–10 THz. They are sensitive to water content and 
can penetrate non-conductive materials, including 
plant tissues [1, 2], making them ideal for assessing 
internal moisture and detecting several  
moisture-related anomalies in plant leaves. 

 

2. Materials and Methods 
 

We developed and manufactured our highly 
sensitive, low-cost THz sensor [3-6]. It consists of a 
nano bolometer coupled with an antenna. We 
experimented with several antenna types of different 
sizes, mostly dipole and wideband antennas. We also 
constructed a prototype of a THz camera with an array 
of sensors for simultaneously detecting two different 
THz frequencies. An example of a sensor array with a 
nano bolometer and wideband type antenna is shown 
in Fig. 1. 

 

  
 

Fig. 1. Array of THz sensors and nano bolometer sensor 
coupled with wide band antenna. 

 
Symptoms of leaf diseases include discoloration, 

spots or blotches, rusts, deformation, fungal growth, 
yellowing or browning edges, frost damage, mottled 
patterns, water-soaked lesions, curling, etc. It is 
important to note the relationship between leaf disease 
and moisture. Moisture is an essential component in 
many leaf diseases and how they develop. A longer 
duration of soaking the leaves increases the risk of 
infection [7, 8]. Water-soaked spots on leaves are 
frequently early signs of plant disease. Such marks 
may induce cell turgor loss and tissue maceration, 
further developing entry areas for pathogens [7]. On 
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the other hand, water deficiency can also increase 
susceptibility to pathogens [9]. 

We used our in-house developed THz system to 
take the THz pictures of the leaves. It comprises a  
0.3 THz source, a camera, and a separate digital signal 
processing element. With further redevelopment, the 
system could also become portable and be used for  
on-field diagnosis. 

The THz camera sensor's nano bolometer thermal 
time constant is lower than 1usec, allowing a  
high-frequency frame rate of the THz image at room 
temperature. The resolution of the THz image is 
dependent upon pixel size and pixel response time. Our 
pixel size is 1mm x 1mm. It comprises the nano 
bolometer, four-channel low noise amplifier (LNA) 
and multiplexer. 

The camera is equipped with image acquisition, 
processing, and display software. It enables us to 
visualize camera-captured images in almost real-time. 
We have also developed several unique features, such 
as image enhancement, filtering, and analysis tools to 
extract relevant information from the raw data of the 
THz camera. Additional digital signal processing 
algorithms enhance our image quality and  
reduce noise. 

Images were obtained by raster scanning the area 
with a dimension of 100 x 100 positions corresponding 
to the image's pixels. Data was acquired using a fast, 
freely on-market available universal serial bus (USB) 
signal acquisition card. For each pixel, 3000 samples 
were acquired. Then, a fast Fourier transform was 
performed on each pixel dataset to determine the 
brightness of each pixel. Due to the efficient software, 
this digital signal processing can run on an average 
laptop computer. 

We also fixed a THz source above a belt conveyor 
to investigate the amount of moisture in the plant 
leaves. The nanobolometer sensor array is placed 
below the conveyor belt. Fig. 2 presents one of our test 
systems for fast analysis and comparison of different 
leaf water patterns. 

 

 
 

Fig. 2. THz source above the belt conveyor and the THz 
sensor array below the conveyor belt. 

3. Results 
 

Figs. 3-5 show some observed leaves of the 
"prunus laurocerasus" or laurel plant with some 
disorders. In Fig. 3, we can see a healthy leave. 

 

 
 

Fig. 3. Image of the healthy "prunus laurocerasus" or laurel 
plant leaf with corresponding Thz image on the right. 

 

 
 

Fig. 4. Laurel plant leaf in a drying process  
with corresponding Thz image on the right. 

 

 
 

Fig. 5. Withered laurel plant leaf with corresponding Thz 
image on the right. 

 
Fig. 4 shows the leaf in the process of drying. The 

dryer the area of the leaf is, the lighter gray is the color 
in the THz image. On the other hand, darker regions 
are more prosperous with moisture. In Fig. 5, we can 
see a withered laurel plant leaf. Although there is still 
a green area in the left picture, the leaf is almost 
dehydrated, except for the leaf veins. 

The advantage of THz spectroscopy for leaf 
internal moisture detection is the non-destructiveness 
of the measurement, which can preserve the sample for 
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further growth and analysis. Water's strong absorption 
of the THz waves can be detected accurately  
and quickly. 

 
 

4. Conclusions 
 
Different leaf diseases are an essential challenge in 

agriculture, landscaping, and gardening. Early 
detection, before visual leaf defects appear, may give 
us a proper diagnosis to implement management 
strategies necessary to maintain plant health. 
Maintaining optimal watering conditions through 
appropriate irrigation practices and environmental 
planning is crucial for enhancing plant resilience 
against diseases. 

Using non-invasive THz technology and machine 
learning [10], it is possible to detect early signs of leaf 
disease on various plants and take appropriate actions 
to promote overall plant health. The integration of THz 
with DSP and imaging techniques in biology is, in our 
opinion, a significant advancement for the  
non-invasive detection of sub-surface moisture of plant 
leaves and for making the correct conclusions about 
plant conditions. 

Our THz leaf monitoring experiments are currently 
not yet focused on research for detecting and treating 
specific leaf diseases. 
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Summary: Out-of-distribution (OoD) detection is essential for robust perception in safety-critical applications such as 
autonomous driving. A common approach for OoD detection is to threshold the pixel-wise SoftMax entropy of a semantic 
segmentation model. However, such methods struggle to identify unknown objects without explicit outlier supervision. 
Entropy-based outlier supervision often fails to distinguish between truly unknown instances and ambiguous or low-confidence 
pixels that fall on the border of objects. In this work, we propose a post-processing method for reducing false-positive OoD 
detections in semantic segmentation networks by leveraging the temporal consistency of predictions. We observe that 
ambiguous pixels tend to fluctuate between semantically similar classes over time, while true OoD objects exhibit more random 
behavior. By filtering out transient fluctuations in predictions, our approach significantly suppresses false detections caused 
by ambiguity. Experiments show that incorporating temporal information reduces false-positive detections, enhancing the 
reliability in real-world scene understanding. 
 
Keywords: Out-of-distribution detection, Pixel tracking, Temporal consistency, Entropy maximization, Autonomous driving. 
 

 
1. Introduction 
 

In the initial stages of developing machine learning 
applications, human experts collect and label large 
amounts of data tailored to their desired use case. This 
data is typically split into a training, validation and test 
set. The model is trained on the training set, the 
validation set is used to optimize the hyperparameters 
and prevent overfitting to the training data, and the test 
set is used to provide an unbiased estimate of the 
model’s generalization performance on unseen data. 
The performance on the unseen data is then the 
expected performance during deployment. For this 
construction to be valid, the data distributions in the 
training, validation and test sets should be 
representative of the same underlying distribution. 
This requirement is often satisfied by collecting 
sufficient amount of data from the domain the model 
is expected to deploy in, and randomly splitting the 
data between all the sets. However, in open-set 
applications such as autonomous driving, where the 
data distribution is long-tailed, encountering  
out-of-distribution (OoD) data during deployment is 
inevitable. 

State-of-the-art neural networks have been shown 
to produce unreliable estimates for OoD data. In 
safety-critical applications, it is therefore essential for 
machine-learning-based systems to detect OoD inputs. 
In the context of environmental perception, identifying 
and classifying objects in a scene is crucial; not only to 
recognize that a scene contains OoD data but also to 
precisely localize the regions where OoD objects 
appear. To address this, a rich line of research has 
emerged around OoD semantic segmentation [1-3], 
which enables pixel-level classification, allowing 
systems to detect and localize OoD objects within a 
scene. However, existing OoD detection approaches 

primarily rely on spatial information from individual 
frames, using metrics such as entropy or energy scores, 
without incorporating temporal features from 
sequential data. In applications like autonomous 
driving, where the input is typically a video sequence 
rather than a single frame, this limitation can lead to 
transient false positives – where momentary sensor 
noise or occlusions cause pixels to be misclassified as 
OoD. Leveraging temporal information is therefore the 
logical next step to enhance detection robustness, 
filtering out fluctuating anomalies and reinforcing 
consistent predictions over time. 

In this work, we propose a post-processing 
approach to reduce false-positive predictions in OoD 
semantic segmentation networks by monitoring the 
network's temporal behavior. First, we identify OoD 
segments in individual frames and track their changes 
over time using pixel-level tracking. Then, by 
analyzing temporal variations in confidence scores, we 
differentiate between true OoD segments and false 
positives. We observe that true OoD segments 
typically exhibit rapid and random fluctuations in 
predictions, whereas ambiguous segments tend to 
fluctuate among semantically related classes (e.g., road 
and sidewalk). By exploiting this difference, our 
method significantly reduces false-positive detections, 
enhancing the robustness and reliability of OoD 
segmentation networks. 

 
 

2. Method 
 
2.1. Per-frame Out-of-distribution Detection 
 

A neural network with a SoftMax output layer can 
be seen as a statistical model f(y|x) that provides a 
probability distribution over n class labels  
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y ∈ ࣝ = yଵ, … , y୬ for each pixel in the image, given 
the parameters θ and the input ݔ. The softmax entropy, 
 

൫ܧ  ఏ݂(ݔ)൯ = −∑ ఏ݂(ݔ|ݕ)௬∈ log൫ ఏ݂(ݔ|ݕ)൯  (1) 
 
is a widely used metric for measuring the uncertainty 
of a model and is a common choice for  
out-of-distribution (OoD) detection [4]. However, 
deep neural networks are often uncalibrated and 
produce overconfident predictions on OoD inputs. One 
approach to mitigate this is to use “known unknowns” 
as a proxy for OoD objects and explitly train the 
network to maximize entropy on unknown objects [5]. 
In this work, we use a pretrained EfficientVit model 
[6] trained on Cityscapes and finetune it for entropy 
maximization. The objective function during fine-
tuning is defined as: 
 

 ℒ = (1 − )॰উ(௫,௬)[lܧ(ߣ ఏ݂(ݔ), [(ݕ ॰একঔ(௫)ൣl௨௧൫ܧ++ ఏ݂(ݔ)൯൧, ߣ ∈ [0,1], (2) 

 
where l୧୬ is the negative log-likelihood for the  
in-distribution target class, and l୭୳୲ is the negative  
log-likelihood averaged across all classes for proxy 
OoD samples pasted onto in-distribution images. 

During inference, the SoftMax entropy is computed 
for each pixel in the image. A pixel is classified as an 
OoD candidate if its entropy exceeds a predefined 
threshold. To identify coherent OoD regions, we 
define a segment as a connected component of OoD 
pixels that share a contiguous boundary with  
in-distribution pixels. To facilitate the temporal 
consistency and analysis, the centroid of each segment 
is tracked across frames. The probability distribution 
of a segment is then the average of all the individual 
pixels in a segment. 
 
 
2.2. Point Tracking 
 

Estimating motion in image sequences was 
traditionally performed using optical flow [7] or 
feature tracking [8]. Optical flow estimates a dense 
motion between a pair of frames, and feature tracking 
follows a sparse set of points over multiple frames. 

The particle video algorithm [9] is a middle-ground 
between both approaches and produces motion 
estimates that are both spatially dense and temporally 
long-range. Several neural network components have 
then been used to extend the particle video algorithm 
to track the trajectories of any individual pixels 
independently [10], in a task referred to as tracking any 
point. This advancement enables fine-grained motion 
estimation, allowing for robust tracking in complex, 
dynamic environments. 

Formally, given a sequence of N frames  [f୲]୲ୀ ∈ R૦×ୌ×, and a query point q = (x, y) 
where (x, y) is the initial location of the query point, 
the goal is to predict the corresponding point track  p୲ = (x୲, y୲) ∈ R fort = 1,… , N. To obtain the 
estimate p୲, we compute convolutional features for 

every frame in the sequence f, and then sample the 
correlations between the features around the query 
frame and all other points. For further details on the 
point tracking method used in this work, we refer the 
reader to [11]. 

In this work, we extend point tracking to follow the 
motion of detected OoD segments. Specifically, the 
centroid of each OoD segment is initialized as a query 
point, and its trajectory is estimated across the 
subsequent frames. This allows for the tracking of 
moving OoD objects in video sequences even through 
occlusions. 

 
 

2.3. Temporal Out-of-distribution Detection 
 
To evaluate the temporal consistency of the 

model’s predictions across consecutive frames, we use 
the mean temporal consistency (mTC) metric This 
metric measures the average distance between 
predictions for consecutive frames. For a sequence of 
T frames, mTC is defined as: 
 

ܥܶ݉  = ଵ்ିଵ∑ ݀௧்ିଵ௧ୀଵ , (3) 

 
where d୲ represents the distance between the model's 
predictions for two consecutive frames ݔ௧ and ݔ௧ାଵ. 
This distance is calculated using the Wasserstein 
distance: 
 

 ݀௧ =  |(ݖ)ݓ ௧ܲ(ݖ) − ௧ܲାଵ(ݖ)|ஶିஶ  (4) ,ݖ݀ 
 
where (ࢠ)࢚ࡼ and ࢚ࡼା(ࢠ) denote the predicted 
probability distributions for frames ࢚	and ࢚ + , 
respectively. The class-specific weight function (ࢠ)࢝ 
reflects the semantic similarity between classes, 
assigning lower weights to transitions between 
semantically similar classes and higher weights to 
transitions between semantically distant classes. 

In this work, we use the hierarchical structure of 
the label ontology to define the weight function (ࢠ)࢝. 
Specifically, we assign a weight of zero to transitions 
occurring within the same superclass (e.g., road and 
sidewalk), this ensures that minor intra-category 
variations that occurs due to expected uncertainty do 
not contribute to the measured inconsistency. 
Conversely, transitions across different superclasses 
are assigned an equal weight of one, emphasizing 
significant semantic shifts. This hierarchical weighting 
strategy ensures that the mTC metric robustly captures 
meaningful temporal inconsistencies while remaining 
invariant to fine-grained within-class variations. 
 
 
3. Experiments 
 

To evaluate the performance of our proposed 
method we require video sequences with consecutive 
frames for tracking. We Evaluate our method on the 
Street Obstacle Sequences (SOS) dataset [12]. The 
SOS dataset contains 20 video sequences of street 
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scenes with more than a thousand labelled frames that 
include up to two OoD objects. 

Table 1 shows the result of our method compared 
to only using Entropy Maximization for OoD 
detection. Our method improves overall performance, 
increasing the F1 score from 58.78 to 62.92. This 
improvement is primarily driven by a substantial 
reduction in false positives (FP), which decreased by 
approximately 50 % from 1135 to 564. However, it's 
important to note that this improvement comes at the 
cost of a slight decrease in true positives (TP). Our 
method detects 940 true positives compared to 1135 by 
the Entropy Maximization approach, representing a 
decrease of about 17 %. This occurs because some of 
the OoD objects don’t exhibit a high mTC score as 
shown Fig. 1. 
 
 

Table 1. Performance on SOS Dataset. 
 

Method TP FP F1 

Entropy 
Maximization 

1135 1135 58.78 

Ours 940 564 62.92 
 

 
 

Fig. 1. Comparison between the range of mTC values  
for OoD objects and false positives. 

 
 
4. Conclusion 
 

In this work, we proposed a method for reducing 
false positive predictions in OoD semantic 
segmentation networks by analyzing the network's 
temporal behavior. By integrating temporal 
information and tracking OoD segments over time, our 
approach enhances the overall performance of OoD 
segmentation. Specifically, we explored mean 
temporal consistency (mTC) as a metric for filtering 
false positives, demonstrating a significant reduction 
in false positives. Future work could investigate 
additional temporal features, such as object motion 
patterns, to further refine detections. Adaptive 

thresholding based on scene dynamics or segment 
properties, as well as hybrid approaches that combine 
multiple post-processing strategies, are also promising 
research directions for improving robustness and 
generalization. 
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Summary: We collected and analyzed face electromyogram, skin electrodermal activity, peripheral skin temperature, and 
electrocardiogram in 60 participants with (N = 35) and without (N = 25) misophonia, a condition characterized by decreased 
tolerance to innocuous sounds. Our goal was to characterize the physiological response to misophonia-triggering sounds 
objectively. We found that misophonic responses can be identified in some cases through atypical physiological reactions to 
triggering stimuli, though not all participants exhibited this response. Our analyses suggest a large interindividual variability 
in response to misophonic triggers and highlight the need for methodological adjustments in future experiments to increase the 
detectability of misophonic reactions. 
 
Keywords: Biosignals, Misophonia, Electromyogram, Electrodermal activity, Electrocardiogram, Peripheral skin 
temperature, Machine learning. 
 

 
1. Introduction 
 

Misophonia is a condition characterized by a 
decreased tolerance to innocuous sounds (i.e., 
triggers), such as chewing, which can be highly 
debilitating for some individuals [1]. Nearly 5 % of the 
adult population is affected by misophonia [2, 3]. 
Despite its prevalence, research on misophonia 
remains limited, and the biological mechanisms 
underlying this condition are poorly understood. This 
gap in knowledge hinders the development of effective 
treatments and preventive interventions. Current 
approaches to studying misophonia often rely on 
participants’ self-report ratings of distress in response 
to triggers, which are subjective and prone to 
variability within participants. To address this issue, 
identifying misophonic triggers through physiological 
signals offers a more objective means of confirming 
responses and assessing the severity of this condition. 
Electrodermal activity (EDA) and heart rate have 
previously been used to describe misophonic responses 
[4-7]. This study aims to further characterize the 
physiological responses associated with misophonia 
by also including facial electromyography (EMG) and 
peripheral skin temperature (SKT), two recording 
modalities that have not been previously explored in 
this condition. 
 
 

                                                           
 
1 Before preprocessing, six recordings acquired at 200 Hz 
and two at 2,000 Hz were resampled at 1,000 Hz using the 
MNE-Python resample() function, which adopts the same 

2. Methods 
 

Experimental paradigm. We recorded five 
physiological signals: EMG for the corrugator 
supercilii (EMG C) and zygomaticus major (EMG Z) 
muscles, EDA, SKT (measured on the palm side of the 
thumb of the left hand), and electrocardiogram (ECG), 
at 1,000 Hz1 [8] in participants with and without 
misophonia. Participants listened to sounds, viewed 
silent videos associated with sounds, or were asked to 
think about sounds in a 3 (sensory modality: auditory, 
visual, mental imagery) by 3 (stimuli: trigger, aversive, 
non-aversive) factorial design. Participants rated how 
distressing (misophonia group) or antisocial (control 
group) the stimulus was for each trial (Fig. 1). This 
distinction between groups is necessary because 
distress is a key feature of misophonic responses, 
which is not typically experienced by control 
participants, even though they may find the stimuli 
unpleasant or antisocial. Participants aged 18 to 45 
without a history of neurological or psychiatric 
diagnoses, hearing loss, or hyperacusis were drawn 
from the South Carolina community and compensated 
for their time. The Misophonia group (N = 35,  
30 female; Mage = 25.3, SDage = 8.10) consisted of 
individuals who experience misophonic reactions 
triggered by sounds with distinct visual components 
but not associated with specific individuals. Trigger 
sets for each misophonia participant were selected 

approach as SciPy, relying on the Fast Fourier Transform. 
We observed no systematic effects of this resampling on 
classification. 
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based on the categories of triggers identified during the 
screening interviews. Control group participants  
(N = 25, 20 female; Mage = 25.0, SDage = 8.10; the 
recruitment of control participants is ongoing) were 
matched with misophonia participants on age, 
biological sex, handedness, and stimuli presentation. 
Control participants were also screened to ensure they 
did not have misophonia. All participants completed 
two misophonia severity questionnaires, the  
Duke-Vanderbilt Misophonia Screening Questionnaire 
(DVMSQ) [9] and the Selective Sound Sensitivity 
Syndrome Scale (S-Five) [3]. They also filled two 
mental imagery questionnaires, the Vividness of 
Visual Imagery Questionnaire (VVIQ) [10] and the 
Bucknell Auditory Imagery Scale (BAIS) [11], which 
included two subscales for vividness (BAIS-V) and 
control (BAIS-C). The study was carried out in 
accordance with the procedures and protocols 
approved by the University of South Carolina 
Institutional Review Board, and all participants signed 
an informed consent. 

 

 
 

Fig. 1. Experimental design. 
 

Preprocessing and feature computation. EMG 
signals were notch-filtered at 60 Hz and band-pass 
filtered in the 20-500 Hz range. They were then 
rectified, baseline-corrected using the average 
amplitude over one second before the stimulus onset, 
and smoothed with a rolling average (window  
size = 100 samples, or 0.1 s). From these preprocessed 
signals, we extracted the peak amplitude within the  
7-second window following the stimulus as features 
for classification. EDA and temperature were similarly 
baseline-corrected and smoothed. For these signals, the 
amplitude 15 seconds after stimulus onset was used as 
a feature. For the ECG signal, R peaks were 
automatically detected using AcqKnowledge (Biopac 
Systems, Inc., Goleta, CA, USA). Two research 
assistants manually edited the R peaks to correct 
motion artifacts and misclassifications. The 
instantaneous heart rate was computed as the inverse 
of the R-R interval and used to characterize the ECG 
signals. We used the mean-square-root of the baseline-
corrected heart rate within a 2-7 second window 
following stimulus onset as a feature. The defined 
windows were based on preliminary analyses. EMG Z 

data from one control participant were excluded due to 
issues related to the data acquisition process. 

Classical statistical analysis. Student’s t-tests and 
correlation analysis were used to compare stimulus 
types within individuals for each physiological signal. 
The correlation between ratings and physiological 
responses was assessed using Pearson’s correlation 
across all trials, regardless of stimulus type or sensory 
modality. All tests were conducted at an	alpha level of 
0.001 without correction for multiple comparisons. For 
statistical significance between time series, multiple 
comparisons were corrected using a cluster-level 
statistical permutation test, as implemented in  
MNE-Python [12]. Since not all trigger trials led to 
misophonic responses, we selected only half of the 
trigger trials based on the higher distress/antisocial 
ratings reported by the participants. This selection 
ensures that the average physiological response to 
triggers is not diluted by trials in which participants did 
not subjectively feel triggered. Since preliminary 
analyses showed a weaker response for the mental 
imagery, it has been excluded from the classical 
statistical analyses. We report on the relative strength 
of responses by modality in the machine  
learning analysis. 

Machine learning analysis. We used machine 
learning to determine whether physiological responses 
could predict group membership (i.e., misophonia 
versus control) and stimulus type (i.e., trigger, 
aversive, and non-aversive). Linear Support Vector 
Machines with default parameterization were 
employed (using the LinearSVC implementation in 
Scikit-Learn [13], based on LIBLINEAR [14]). A 
leave-one-out cross-validation was used to assess 
group classification, and a leave-one-group-out  
cross-validation, with the participant serving as the 
grouping factor, was used for assessing stimulus type 
classification. Features were standardized by removing 
the mean and scaling to unit variance before 
classification. For stimulus classification, both 
accuracy and weighted f1 scores were used to measure 
performance for the balanced case. For the unbalanced 
case of group classification, only weighted f1 scores 
were reported. To assess the statistical significance of 
f1 scores and accuracies, we bootstrapped the trial 
selection within participants 100 times using random 
selection with full sample size and replacement. We 
evaluated the relative importance of the different 
features in the classification using permutation feature 
importance [15]. We imputed missing data (i.e., 
features from the excluded EMG Z channel for one 
control participant) using the nearest neighbors 
imputation approach [16] provided by the scikit-learn 
KNNImputer class. 
 
 
3. Results 
 

First, we examined individual differences in 
physiological responses to trigger versus aversive 
stimuli for each signal. We found that misophonia 
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triggers could be identified in some participants  
(Fig. 2A) and at the group level (Fig. 2D) based on 
physiological responses. Participants who exhibited 
significant physiological responses to triggers were 
generally those who self-reported experiencing the 
most distress when presented with these triggers. This 
is demonstrated by the fact that all but one significant 
physiological response differences at the individual 
level (Fig. 2A) were observed in the nine participants 
who showed a clear difference in ratings between 
aversive and trigger stimuli, with t-statistics greater 
than 10 (Fig. 2C). Additionally, self-report and 
physiological responses were strongly correlated in a 
large proportion of participants, particularly within the 
misophonia group (Fig. 2B). 

To further investigate the predictive value of 
physiological responses, we used machine learning to 

assess whether group membership and stimulus types 
could be predicted from physiological data. When all 
features of the physiological responses were 
considered together, participant classification into 
misophonia and control groups was not statistically 
significant. Not surprisingly, self-report 
distress/antisocial ratings were strong predictors of 
group membership (Fig. 3A). However, predictive 
information was found in physiological responses 
when contrasts between stimulus types were used  
(Fig. 3B). The contrast between aversive and  
non-aversive stimuli appeared to be as indicative of 
misophonia as contrasts involving trigger stimuli. 
Additionally, mental imagery contrasts between 
stimulus types seemed to provide as much predictive 
information as perceived auditory or visual stimuli. 

 
 

 
 
Fig. 2. Detecting triggers from physiology. A) Significant t values from Student t-tests comparing trigger and aversive 
responses by physiological signal and participant. B) Significant Pearson's correlations between physiological responses  
and distress (misophonia) or antisocial (control) ratings. C) Column 1: Student’s t values for the difference in means between 
distress/antisocial ratings for triggers (T) and aversive (Av) stimuli, noted t(T, Av). Columns 2-4: Average distress/antisocial 
ratings for T, Av, and NAv (non-aversive) stimuli. Columns 5-6: DVMSQ and S-Five misophonia severity scores. For A-C, 
the dashed light red line separates misophonia and control participants. Within groups, participants are sorted by decreasing 
t(T, Av) values. The dashed light gray line identifies misophonia participants with t(T, Av) > 10. D) Physiological response 
to stimuli. Shaded regions represent the 95 % bootstrapped confidence intervals. Black overlines show time intervals where 
differences between responses to trigger and aversive stimuli were statistically significant according to a cluster-based 
permutation test. 

 
 

On average, physiological responses to auditory 
and visual but not mental imagery trials were 
predictive of stimulus types (Fig. 3C, E). However, 

these classification results only held for a subset of 
participants with misophonia (Fig. 3F), similar to 
results in Fig. 2A. These results were primarily driven 
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by responses to triggers in misophonia participants 
(Fig. 3G, H), particularly those who self-reported 
being strongly triggered (Fig. 3I). Interestingly, there 
was greater confusion between triggers and non-
aversive stimuli than between triggers and aversive 
stimuli, suggesting that in some cases, misophonic 
responses might not have been triggered as expected. 
Alternatively, if ECG was driving this pattern in the 
confusion matrices (Fig. 3G-I), the ECG response for 
non-aversive stimuli being midway between the 
response for triggers and aversive stimuli (Fig. 2D) 
could also explain this observation. To test that 
possibility, we evaluated the relative importance of the 
classification features. In line with the results 
displayed in Fig. 2, EMG C was the most important 

feature, followed by SKT and ECG (Fig. 4). Further, 
we performed an ablation study where we removed the 
features derived from ECG and the confusion pattern 
did not change. Thus, it appears unlikely the difference 
in ECG response to the different stimulus types is 
responsible for this observation. 

Finally, we assessed the relationship between 
prediction accuracies for classifying stimulus types 
(Fig. 3D, F) and misophonia severity scores (Fig. 2C) 
across participants. As expected, we found a 
significant correlation between these measures  
(Fig. 5). However, contrary to our expectations, we did 
not observe a significant correlation between 
prediction accuracies and mental imagery scores in the 
mental imagery condition. 

 
 

 
 

Fig. 3. Predictivity of the physiological response assessed through machine learning. A) Prediction (weighted f1 scores)  
of group membership (misophonia vs. controls) for the average response per sensory modality and stimulus type using 
physiology data only (i.e., 60 participants; 45 features: 3 stimulus types × 3 sensory modalities × 5 physiological signals),  
self-report ratings only (9 features), or both (54 features). B) Prediction (weighted f1 scores) of group membership for each 
sensory modality (V: visual; A: auditory; I: mental imagery) and stimulus type contrasts (T: trigger; Av: aversive; NAv:  
non-aversive). C, E) Weighted f1 scores (C) and accuracies (E) for stimulus type prediction per sensory modality.  
D, F) Prediction (weighted f1 scores) for the stimulus types per participant in the control group (D) and the misophonia group 
(F). Participants were sorted by decreasing order of accuracy. Participant pairing between groups is indicated using the same 
numbers. For panels A-F, the pale dashed lines indicate the chance level. Participant numbers were prefixed with V, A, or I 
when the 5th percentile of the bootstrapped accuracy distribution was above chance levels (0.33). G-I) Confusion matrices  
per sensory modality for predicting stimulus types in the control (G), the misophonia (H) groups, and the misophonia 
participants with t(T, Av) > 10 as defined in Fig. 2 (I), scaled so that the chance level is 1.0. 

 
 

4. Discussion 
 

Triggers were robustly identifiable from 
physiological responses for a relatively small subset of 
participants with misophonia (Fig. 2A). The absence of 

significant physiological responses to triggers in some 
misophonia sufferers may be due to factors such as the 
failure to replicate the triggering context (e.g., chewing 
sound in the library) [7], the idiosyncratic nature of the 
stimuli (e.g., the wrong type of chewing), or 
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insufficient trigger duration. Participants with the 
highest severity scores were not always the ones for 
whom triggers were identified, suggesting that we may 
not have elicited the expected response in all 
participants. Previous studies used longer stimuli (e.g., 
15 s [5]), and as shown in Fig. 2D, physiological 
responses were still building at the end of the 5-second 
stimulus. 

 

 
 

Fig. 4. Feature importance for stimulus type prediction  
by modality. Larger numbers indicate features with a higher 

influence on the classification. 
 

 
 

Fig. 5. P-values of Pearson’s correlations between stimulus 
type prediction accuracy (Fig. 3D, F) and both misophonia 

(Fig. 2C) and mental imagery scores. 
 
Self-report ratings were sufficient to identify group 

membership, though not perfectly (Fig. 3A). This 
could be attributed to several factors: misophonia 
participants may not have been triggered by the 
designated trigger stimuli, self-report measures may 
have been noisy or unreliable, or the classifier may not 
have fully captured the complexity of the data. The 
differences in physiological responses between the 
stimuli in the misophonia group were more 
pronounced and driven primarily by trigger stimuli 
(Fig. 3C-I). Additionally, physiological responses to 
both aversive and non-aversive non-trigger stimuli 
differed between individuals with misophonia and 
those without (Fig. 3B), suggesting that misophonia is 
associated with a broader intolerance to sound [17-19]. 
In future work, we plan to explore using autoencoders 
to extract richer features and apply pre-trained deep-
learning models to the time-frequency representation 
of these physiological signals to improve our ability to 
identify individual misophonic triggers. 

 
 

5. Conclusion 
 

Physiological data from multiple recording 
modalities offer valuable insights into misophonia, 
highlighting distinct response patterns to trigger and 
non-trigger stimuli. These physiological responses 
differ between individuals with misophonia and those 
without, indicating a clear distinction in how each 
group reacts to these stimuli. These differences extend 
beyond sounds to include silent videos and even the 

mental imagery of sounds. Together, these findings 
suggest that misophonia may be identifiable through 
unique physiological patterns, regardless of the 
stimulus type, highlighting the potential of 
physiological measures for improving our 
understanding and diagnosis of misophonia. 
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Summary: This research explores the implementation of advanced path-planning algorithms, enhanced by Artificial 
Intelligence (AI), to optimize drone missions for rescue and exploration purposes. By leveraging AI-driven heuristics, the 
study addresses key challenges such as route efficiency, environmental adaptability, and resource utilization. The developed 
application, integrates user-friendly interfaces with interactive mapping, enabling customization of mission parameters like 
wind conditions, altitude, and drone autonomy. Tested algorithms, including Nearest Neighbor Traversal and its variations, 
demonstrated diverse performance strengths, with AI playing a pivotal role in overcoming local optima and improving overall 
results. The research highlights the transformative potential of combining AI with drone technology to enhance operational 
efficiency in critical scenarios. Future work aims to address computational limitations and expand adaptability for complex 
environments. 
 
Keywords: Route planning, Drones, Routing algorithms, Wind, Drone autonomy, TSP, Rescue, Exploration. 
 

 
1. Introduction 
 

In recent decades, the use of drones has grown 
exponentially across diverse applications. These 
unmanned aerial vehicles have become increasingly 
accessible, finding use in sectors ranging from 
photography and filmmaking to agriculture and 
surveillance. The proliferation of drones is largely due 
to technological advancements that have reduced costs 
and enhanced ease of use, allowing both professionals 
and hobbyists to operate them for various purposes. 

Modern drones are equipped with high-resolution 
cameras, advanced sensors, and precise navigation 
systems, enabling them to autonomously perform 
complex tasks with high efficiency. These 
technological advancements allow operators to define 
intricate flight paths using relatively simple input data, 
thereby eliminating the need for continuous manual 
intervention. The advantages of employing unmanned 
aerial systems are evident: by removing the constraints 
associated with human involvement, factors such as 
fatigue and operational limitations are mitigated, 
enabling sustained and highly efficient operations. 
Furthermore, this autonomy allows human operators to 
focus on higher-level tasks while a fleet of drones 
simultaneously executes multiple routes in parallel. As 
a result, the development of optimized route-planning 
strategies has become increasingly critical to 
maximizing the effectiveness of drone operations. 

Although autonomous drone route planning offers 
benefits across a wide range of applications, this 
research focuses on the specific domain of route 
planning for exploration and rescue missions. The 
ability to define optimal routes for such operations can 
significantly enhance area coverage, resource 
allocation, and response times. This study evaluates 
various coverage path algorithms designed to ensure 

efficient coverage of the target area while minimizing 
the distance traveled, thereby addressing the unique 
challenges posed by exploration and rescue scenarios. 

The primary objective of this research is to develop 
a software solution capable of generating optimized 
drone routes for rescue and exploration missions. The 
application is designed to provide a user-friendly 
interface that enables users to define a specific area of 
interest through an interactive map. Users can 
customize key parameters such as the drone's launch 
point, autonomy, camera field of view (FOV), altitude, 
speed, and wind direction. 

Using these inputs, the program employs advanced 
coverage path algorithms and heuristic methods to 
generate an optimal flight path. The output is a mission 
file containing a detailed sequence of waypoints for the 
drone to follow. This file is fully compatible with 
widely used mission planning tools, such as Mission 
Planner [1] and QGroundControl [2]. These platforms 
act as intermediaries, providing a graphical interface 
for configuring and visualizing flight parameters, 
thereby facilitating efficient mission execution. 

 
 

2. State of the Art 
 

Path-planning algorithms have been a fundamental 
topic in graph theory [3], [4] and computer science for 
decades. Classic algorithms like Dijkstra's and  
Floyd-Warshall's methods [5] are well-suited for 
finding the shortest path between nodes in weighted 
graphs. However, due to their computational 
complexity, these algorithms are not feasible for  
large-scale problems. Heuristic approaches, such as 
the A* algorithm [6], provide efficient solutions by 
combining optimal pathfinding with heuristic 
guidance. These approaches are increasingly 
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augmented with AI techniques, allowing for more 
intelligent and adaptive solutions in dynamic 
environments. 

For exploration and rescue missions, the goal is not 
only to find the shortest path between nodes but to 
determine the optimal route that visits all nodes exactly 
once without repetition. This challenge resembles the 
Traveling Salesperson Problem [7] (TSP), an  
NP-complete problem. In this research, variants of the 
TSP are explored to evaluate their performance in 
drone mission planning. 

 
 

3. Problem Definition 
 

The main problem addressed in this research is 
finding an optimal route that enables a drone to fully 
explore a specific area and generate the corresponding 
waypoint files. Key considerations include: 

• Defining the maximum exploration area: 
Allowing users to delineate the area achievable 
by the drone through a graphical interface; 

• Environmental factors: Integrating wind 
direction and speed to optimize energy 
consumption; 

• Route optimization: Employing advanced 
algorithms to generate efficient waypoint 
sequences; 

• File compatibility: Ensuring the output files are 
compatible with Mission Planner and 
QGroundControl. 

 
 
4. Development and Implementation 

 
4.1. Technical Factors in Route Planning 
 

The planning process considers multiple technical 
factors essential for mission optimization. Among 
these, altitude and speed play a pivotal role. The 
drone's altitude directly impacts terrain coverage and 

data quality. A higher altitude increases the field of 
view (FOV), allowing larger areas to be surveyed per 
capture, while lower altitudes enhance the resolution 
of collected data. In equation (1) d represents the half 
of the base of the triangle that forms the drone's field 
of view at a height h, where FOV is the angle ߙ. 

 
 ݀ = ݄  cot(ߙ 2⁄ ) (1) 

 
Speed affects mission duration and the rate at 

which the drone gathers information, and requires 
careful adjustment based on mission objectives. 
equation (2) represents the drone's area coverage rate, 
defined as the rate at which the drone can 
systematically cover a defined area while maintaining 
a constant field of view at a given altitude and flight 
speed. Note that for simplification, it is assumed that 
the FOV angle of the camera is equal in both axes, 
meaning the field of view is symmetric in width  
and length. 

 
 ܸ = 4  ݀ଶ ௌ௩ൗݐ  (2) 

 
Additionally, drone autonomy and FOV are 

critical. The software also calculates the maximum 
scanning surface for a given range and a given height 
of the drone. This surface is given by equation (3): 

 
௫ܤܵ  = 2  ݄  ݒ  ௦ݐ  tan ߙ) 2⁄ ) (3) 

 
This maximum coverage area is designed for routes 

that follow a ladder pattern. 
The planning system ensures flexibility by 

allowing user customization of these parameters, 
avoiding restrictions to specific drone models. 
Autonomy is treated conservatively, utilizing only  
70 % of the total battery capacity to ensure safe return 
to the launch point. Wind direction and speed are also 
integrated into the planning process to enhance energy 
efficiency and minimize flight times Fig. 1. 

 

 
 

Fig. 1. User Interface. 
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4.2. Algorithmic and Implementation Strategies 
 

The system addresses irregular mission areas by 
constructing a bounding parallelogram around the 
user-defined exploration zone, subdividing it into 
smaller squares. These squares act as waypoints, with 
irrelevant waypoints outside the defined area 
eliminated through custom filtering algorithms. The 
key strategies include, Grid Rotation and Home Point. 

• Grid Rotation, aligns the waypoint grid 45º with 
wind direction to reduce resistance and optimize 
energy use; 

• Home Point starts the mission at the waypoint 
closest to the wind's origin direction, minimizing 
energy consumption during the initial traversal. 

The implemented algorithms include coverage path 
algorithms, which calculate efficient coverage paths 
within the defined exploration area. Additionally, 
traversal heuristics, based on variants of the Nearest 
Neighbor algorithm, optimize the sequence of visited 
waypoints. These heuristics incorporate directional 
and randomization elements to address local optima 
and mitigate abrupt directional changes, further 
enhancing performance. This information is illustrated 
in Fig. 2. 

 

 
 

Fig. 2. Three missions Grid Rotation and Home Point. 
 

 
5. Results Analysis 
 

This study evaluates three drone traversal 
strategies: nearest neighbor (NN), nearest directional 
neighbor (NDN), and nearest random neighbor (NRN). 
Four metrics were analyzed: total explored area, 
number of missions, number of waypoints, and total 
distance traveled, along with the impact of  
wind direction. 

The results (Table 1) indicate that the 'Nearest 
Directional Neighbor Traversal' strategy minimizes 
traveled distance, optimizing efficiency. In contrast, 
the 'Nearest Random Neighbor Traversal' strategy was 
less efficient in this evaluation, although its variability 
suggests potential improvements with multiple 
executions. 

It was found that the location of the starting point, 
relative to the wind direction significantly affect the 
total travel distance, but wind direction does not 
substantially affect the performance of the traversal 
strategies. Therefore, algorithm selection should 
prioritize efficiency over wind direction. 

6. Conclusions 
 

The findings indicate that the 'Nearest Directional 
Neighbor Traversal' strategy is the most efficient on 
average, as it consistently achieves the shortest travel 
distances. However, the 'Nearest Random Neighbor 
Traversal' strategy holds potential for discovering 
better solutions through multiple executions, 
leveraging its stochastic nature to escape local optima. 
Additionally, the starting point’s location relative to 
the wind direction significantly impacts the total travel 
distance, with favorable positioning reducing distance 
considerably. In contrast, no clear correlation was 
observed between wind direction and the performance 
of the different traversal strategies. Thus, while wind 
direction itself is not a decisive factor, the strategic 
selection of the starting point remains crucial for 
optimizing drone traversal efficiency. 
 
 

Table 1. Result for large and irregular enclosure. 
 

Strateg
y 

wind m2 
Way 

points  
Distance 

NN 
NO 1241120 541 

40737 
NDN 40578 
NRN 40319 
NN 

N 1218309 531 
38521 

NDN 37846 
NRN 38731 
NN 

E 1218333 531 
34223 

NDN 33886 
NRN 34091 

 
 
7. Limitations and Future Work 
 

Despite its robustness, the program has limitations, 
such as computational inefficiencies for missions with 
more than 2000 waypoints and a simplified  
two-dimensional approach that does not account for 
altitude variations. However, the waypoint limit is not 
a significant constraint in most practical applications, 
as typical drone missions usually involve fewer 
waypoints. Future developments may include  
matrix-based waypoint management and optimization 
of trajectories to and from the home point, improving 
execution time and adaptability to complex terrains. 

Additionally, future work will include 
benchmarking against AI-based routing models, such 
as Genetic Algorithms and Reinforcement Learning, to 
assess their potential advantages over the heuristic 
methods evaluated in this study. 

Another limitation of this study is the lack of a 
detailed computational efficiency analysis for  
real-time execution. Future work will focus on 
performance benchmarking of the proposed heuristics 
while also validating the algorithms through  
real-world flight tests to assess their practical 
applicability and robustness under real environmental 
conditions. 
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Summary: This study proposes to use the Deep Learning detection model, YOLOv12, for Colony-Forming Unit (CFU) 
detection in Petri dish images, aiming to automate the traditionally labor-intensive and error-prone manual counting process. 
YOLOv12 integrates attention mechanisms to enhance detection accuracy while maintaining real-time performance. The 
model achieves a mAP50 of 0.975 and a mAP50:95 of 0.706 across all 5 classes of CFU in the AGAR dataset, demonstrating 
its effectiveness in automating microbiological analysis. This innovation highlights the potential of YOLOv12 to streamline 
laboratory workflows and improve accuracy in CFU detection. 
 
Keywords: Deep learning, Convolutional neural network, YOLO, Colony forming units, Petri dish. 
 

 
1. Introduction 
 

Due to the microscopic nature of microorganisms, 
which prevents them from being directly counted, Petri 
dishes serve as a controlled environment to facilitate 
their growth, resulting in the formation of  
Colony-Forming Units (CFUs) that are visible to the 
naked eye. This method, known as microbial culture 
[1], is fundamental in microbiology for quantifying 
and identifying microorganisms in various samples. 
The typical CFU count ranges from 30 to 300 on dishes 
with a standard diameter of 90 mm. Accurate 
enumeration of CFUs ensures the safety and quality of 
products across multiple industries, including food, 
cosmetics, and pharmaceuticals [2-5]. This process is 
not only a regulatory requirement but also a critical 
step in preventing microbial contamination, which can 
lead to health risks [6] (from foodborne illness to 
death), product recalls, and economic losses. 
Therefore, counting CFUs on Petri dishes is an 
indispensable procedure in quality control and  
safety process. 

However, traditional methods for CFU counting 
predominantly rely on manual inspection by trained 
microbiologists. This approach is time-consuming, 
labor-intensive, and prone to human error, making it 
challenging to meet the growing demands for 
efficiency and accuracy in modern laboratories. 
Manual counting involves visually inspecting each 
Petri dish, identifying colonies, and recording their 
numbers, which can take several minutes per dish. This 
process becomes even more cumbersome when 
dealing with large-scale analyses, where hundreds or 
thousands of dishes need to be examined daily. 

Additionally, the subjectivity of human judgment 
can lead to inconsistencies in results, further 
complicating the reliability of manual methods. 

To address these limitations, automated solutions 
have been developed, but many still rely on classical 
image processing techniques, such as thresholding, 
edge detection, and color segmentation. While these 
methods offer some level of automation, they often 
struggle with the complexity and variability of CFU 
appearances. Factors such as overlapping colonies, 
varying sizes, shapes, and colors, as well as the 
presence of artifacts like bubbles, writings or scratches 
on the Petri dish surface, can significantly impact the 
accuracy of these traditional algorithms. Furthermore, 
these methods often require extensive preprocessing 
and parameter tuning, which can be impractical for 
laboratories with diverse sample types and varying 
imaging conditions. 

In recent years, advancements in artificial 
intelligence, particularly Deep Learning, have 
revolutionized the field of image analysis. Deep 
Learning models, such as Convolutional Neural 
Networks (CNNs) and Vision Transformers (ViTs), 
have demonstrated exceptional performance in object 
detection, classification, and segmentation tasks [7]. 
While CNNs are faster and more efficient [8], they 
often fall short in capturing complex patterns and 
features compared to ViTs. Vision Transformers, on 
the other hand, excel in modeling intricate 
relationships within images [9] but are 
computationally and data intensive, complex, and less 
suited for real-time applications. This trade-off 
between speed and performance poses a significant 
challenge in the context of microbiological analysis, 
where rapid and accurate results are essential. 

To address these challenges, we propose 
integrating YOLOv12 [10], a recently released (Feb. 
24th 2025) state-of-the-art Deep Learning model 
designed for real-time object detection. YOLOv12 
combines the strengths of both CNNs and ViTs, 
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offering a balance between speed and accuracy. By 
leveraging advanced attention mechanisms and 
optimized architectures, YOLOv12 achieves high 
detection performance while maintaining the 
efficiency required for real-time analysis. This makes 
it an ideal candidate for automating the detection and 
enumeration of CFUs in Petri dish images. 

In this study, we will evaluate the performance of 
YOLOv12 in the context of microbiological image 
analysis to determine its effectiveness in meeting the 
demands of real-time CFU detection and enumeration. 

Section 2 covers the methodology: Section 2.1 
introduces the AGAR dataset, detailing its structure 
and relevance. Section 2.2 presents YOLOv12, 
highlighting key innovations like Area Attention and 
R-ELAN. Section 2.3 describes the training process, 
including dataset split, preprocessing, and model 
optimization. In Section 3, we compare YOLOv12m 
performance against Faster R-CNN [11], Cascade  
R-CNN, and Vision Transformers. Section 4 discusses 
future improvements, and Section 5 summarizes  
key findings. 
 
 
2. Method 
 
2.1. AGAR Dataset 
 

For this study, we used the AGAR dataset by 
NeuroSYS [12] which is a comprehensive collection of 
microbial colony images. It consists of 18000 
annotated images of Petri dishes, featuring five 
different microorganisms: Staphylococcus aureus, 
Bacillus subtilis, Pseudomonas aeruginosa, 
Escherichia coli, and Candida albicans (Table 1). 
These microorganisms were cultured under diverse 
lighting conditions and captured using two different 
cameras, resulting in images of varying resolutions. 
The dataset includes both single and mixed cultures, 
providing a rich and diverse set of samples for training 
and evaluating Deep Learning models. 

The images in the AGAR dataset are categorized 
into two subsets based on resolution: higher-resolution 
(4000 × 6000 pixels), lower-resolution (2048 ×  
2048 pixels). For our study, we utilized the lower-
resolution subset. This subset is particularly valuable 
for developing models that handle common real-world 
microbiological analysis scenarios and imaging 
conditions. 

The annotations include bounding boxes (BBs) for 
each colony, specifying their location and class, which 
is essential for training object detection models. 

In the associated paper, researchers evaluated two 
prominent object detection models, Faster R-CNN and 
Cascade R-CNN, to detect CFU in the AGAR dataset 
images. These models were chosen for their robust 
performance in object detection tasks and were trained 
and tested using the dataset. The results of these 
experiments will serve as a comparison benchmark for 
evaluating the performance of YOLOv12 in accurately 
identifying and counting CFUs in microbiological 
images. 

Table 1. CFU Classes, Descriptions, and Representations 
from the AGAR Dataset. 

 
Classes Description Image (280 × 280) 

S. aureus 

A gram-positive 
bacterium 

commonly found 
in the human 

microbiota but also 
known for causing 

infections. 

B. subtilis 

A gram-positive 
bacterium widely 
used in industrial 

and scientific 
applications, 
known for its 
ability to form 

endospores. 

P. aeruginosa

A gram-negative 
bacterium known 

for its resistance to 
antibiotics and its 
role in hospital-

acquired 
infections. 

E. coli 

A gram-negative 
bacterium 

commonly found 
in the human gut, 
with some strains 
causing foodborne 

illnesses. 

C. albicans 

A yeast that is a 
common cause of 

fungal infections in
humans, 

particularly in 
immunocompromi

sed individuals. 

 
 
2.2. YOLOv12 Model 
 

YOLOv12 is designed to balance speed and 
precision, making it ideal for real-time applications, 
including microbiological analysis. Its architecture 
integrates advanced attention mechanisms, which 
enable it to focus on relevant features in an image 
while ignoring irrelevant details. This selective 
attention enables YOLOv12 to achieve a mean average 
precision (mAP) of 0.552 on the COCO 2017 dataset 
[13], a widely used benchmark for evaluating detection 
models, positioning it among the top-performing 
detection models. 

At the core of YOLOv12 lies the attention-centric 
approach, which sets it apart from CNNs. While CNNs 
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excel in extracting spatial features, they often struggle 
with capturing long-range dependencies and complex 
relationships within an image. YOLOv12 addresses 
this limitation by incorporating attention mechanisms, 
which dynamically weigh the importance of different 
regions in an image. This allows the model to focus on 
the most informative parts of the image, such as the 
edges of microbial colonies or their distinctive 
textures, while disregarding less relevant areas like the 
background which represents most of the Petri  
dish images. 

The three main improvements of YOLOv12 are: 
Area Attention: 
YOLOv12 introduces Area Attention, a novel 

mechanism that divides the image into vertical or 
horizontal segments, reducing computational 
complexity while maintaining a large receptive field. 
This approach ensures that the model can efficiently 
process high-resolution images, such as those in the 
AGAR dataset, without sacrificing accuracy. By 
focusing on specific areas of the image, Area Attention 
helps YOLOv12 to handle the variability in colony 
sizes, shapes, and densities, which are common 
challenges in microbiological analysis. 

Residual Efficient Layer Aggregation 
Networks (R-ELAN): 
YOLOv12 incorporates R-ELAN, an architecture 

designed to enhance feature aggregation and stabilize 
training. R-ELAN introduces residual connections and 
scaling techniques, which improve gradient flow and 
prevent issues like vanishing gradients during training. 

Optimized Architecture: 
YOLOv12 streamlines its architecture by removing 

redundant layers and optimizing the balance between 
convolutional and attention-based operations. This 
reduces computational overhead and improves 
inference speed. The model also leverages 
FlashAttention, a technique that optimizes memory 
access patterns during attention calculations, further 
enhancing efficiency. 

The attention-centric approach in YOLOv12 is 
inspired by the success of transformer models in 
natural language processing and computer vision. 
Unlike traditional CNNs, which apply convolutional 
filters uniformly across an image, attention 
mechanisms allow the model to adaptively focus on 
specific regions. This is particularly useful in 
microbiological analysis, where colonies can vary 
widely in size, shape, and texture. 
 
 
2.3. Models Training 
 

The dataset (AGAR low-resolution subset) used for 
training consisted of 4237 images, while the validation 
set included 3475 images. Additionally, 2817 test 
images were used to evaluate the model performance. 
The images were originally captured at a resolution of 
2048 × 2048 pixels and were reduced to 1024 ×  
1024 pixels to optimize resource usage during training. 

The training of YOLOv12 was conducted over  
50 epochs using a batch size of 6 and an image size of 

1024 pixels on an NVIDIA RTX 4060 (16 GB) GPU. 
The model was trained from scratch, without  
pre-training, to ensure it learned directly from the 
provided dataset. 

YOLOv12 is available in five versions: nano (n), 
small (s), medium (m), large (l), and extra-large (x). 
The model used was the medium version of 
YOLOv12, which offers a good compromise between 
resource consumption and performance, providing an 
excellent. This version operates at 67.5 GFLOPs (Giga 
Floating Point Operations Per Second), ensuring a 
good balance between performance and computational 
efficiency, making it suitable for real-time applications 
while respecting hardware limitations. This makes it 
an ideal choice for automated microbiological 
analysis, where both speed and accuracy are critical. 

To enhance the model robustness and 
generalization capabilities, extensive data 
augmentation techniques were applied, including 
random flipping, rotation, zooming, HSV (hue, 
saturation, value) variations, and mosaic 
augmentation. These augmentations helped the model 
to better handle the variability in colony appearances 
and improved its performance on unseen data. 

The training process lasted approximately 6 hours, 
with an estimated electricity consumption of 1.1 kWh, 
electricity cost of 0.20€ and a carbon footprint of  
50 grams of CO�, based on French energy standards. 
The model lightweight architecture and optimized 
training process contributed to minimal resource 
consumption, making it a cost-effective and 
environmentally friendly choice. 
 
 
3. Results 
 

Once YOLOv12m is trained on the AGAR  
lower-resolution subset, it can infer on unseen data 
from the test dataset. Below are a few examples of its 
inferences (Figs. 1, 2 and 3). 

 

 
 

Fig. 1. YOLOv12m inference on a mixed-culture Petri dish 
image of S. aureus (blue BBs) and P. aeruginosa (white 
BBs). YOLOv12m handles low-contrast CFUs  
(P. aeruginosa) well. 
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Fig. 2. YOLOv12m inference on a mixed-culture Petri dish 
image of S. aureus (blue BBs) and E. coli (green BBs). 
YOLOv12m successfully detected S. aureus CFUs within  
E. coli CFUs. 

 

 
 

Fig. 3. YOLOv12m inference on a single-culture Petri dish 
image of B. subtilis (light blue BBs), showcasing how well 

YOLOv12m detect overlapping CFUs. 
 
The following table (Table 2) presents the 

performance metrics of YOLOv12m on the  
lower-resolution subset of the AGAR dataset. The 
evaluation includes precision, recall, mAP50, and 
mAP50:95, commonly used to evaluate object 
detection models [7]. 
 
 

Table 2. Results obtained by YOLOv12m  
on the lower-resolution subset of the AGAR dataset. 
 
Classes Precision Recall mAP50 mAP50:95 

S. aureus 0.971 0.919 0.970 0.685 
B. subtilis 0.967 0.947 0.975 0.676 

P. aeruginosa 0.970 0.976 0.989 0.738 
E. coli 0.988 0.988 0.994 0.784 

C. albicans 0.970 0.886 0.950 0.649 
All 0.973 0.943 0.976 0.706 

 
The model achieved high precision and recall 

scores for all classes, demonstrating its ability to 
accurately detect colonies while minimizing false 

positives and false negatives. Notably, E. coli showed 
the highest precision and recall, with values of 0.988, 
reflecting the model excellent performance in 
identifying this particular species. P. aeruginosa also 
exhibited strong performance, with a precision of 
0.970 and a recall of 0.976. S. aureus, B. subtilis, and 
C. albicans similarly demonstrated high precision and 
recall. YOLOv12m achieved an overall mAP50 of 
0.976 and mAP50:95 of 0.706. This indicates that the 
model not only accurately detects colonies but also 
maintains high precision across varying levels of 
overlap between predicted and ground truth BBs. Let’s 
compare YOLOv12m with other CNNs models used in 
[11] trained with the AGAR dataset (Table 3). 
 
 
Table 3. mAP50:95 results comparison between Faster  
R-CNN, Cascade R-CNN and YOLOv12  
on the lower-resolution subset of the AGAR dataset, best 
results in bold green. 

 

Classes 
Faster  

R-CNN 
Cascade 
R-CNN 

YOLOv12m 

S. aureus 0.665 0.692 0.685 
B. subtilis 0.441 0.480 0.676 

P. aeruginosa 0.506 0.547 0.738 
E. coli 0.565 0.582 0.784 

C. albicans 0.652 0.668 0.649 
All 0.560 0.594 0.706 

 
The comparative results reveal significant insights 

into the performance of these models in detecting 
microbial colonies. YOLOv12m consistently 
outperformed Faster R-CNN and Cascade R-CNN for 
most of the classes. 

Overall, YOLOv12m achieved an mAP50:95 of 
0.706 across all classes, significantly outperforming 
both Faster R-CNN (0.560) and Cascade R-CNN 
(0.594). This superior performance can be attributed to 
YOLOv12 attention-centric approach, which allows it 
to focus on relevant features while ignoring irrelevant 
details. These results confirm YOLOv12 significant 
improvements over existing methods. But let’s 
compare these results to those obtained with ViT 
models applied to the AGAR dataset in [14] (Table 4). 
 
 
Table 4. mAP50:95 results comparison between Cascade 
Mask (CM) R-CNN, Mask R-CNN using Swin Transformer 
backbone and YOLOv12m on the AGAR dataset, best 
results in bold green. 

 

Classes CM R-CNN* 
Mask  

R-CNN* 
YOLOv12m

Backbone Swin-B Swin-S Swin-T  
S. aureus 0.736 0.746 0.722 0.685 
B. subtilis 0.531 0.520 0.508 0.676 

P. aeruginosa 0.604 0.603 0.577 0.738 
E. coli 0.426 0.422 0.406 0.784 

C. albicans 0.772 0.753 0.752 0.649 
All 0.614 0.609 0.560 0.706 

 
* Please note that the Swin Transformer-based backbone models 
were trained using a different technique and subset on the AGAR 
dataset (as described in their paper [14]) but achieved similar results 
using this technique with Faster R-CNN and Cascade R-CNN (with 
no Swin backbone), as those shown in Table 2. 
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YOLOv12m achieves an mAP50:95 of 0.706, 
outperforming both Cascade Mask R-CNN and Mask 
R-CNN model using Swin Transformer backbones. 
Meanwhile, YOLOv12m maintains a lower 
computational cost with 67.5 GFLOPs and  
20.2 million parameters, making it well-suited for  
real-time applications. In contrast, Swin Transformer 
backbones offer competitive performance but at a 
higher computational cost. 

For instance, the Swin-T backbone in Mask  
R-CNN [15] achieves an mAP50:95 of 0.560 with 
103.85 GFLOPs and 47.39 million parameters, while 
the Swin-S backbone reaches an mAP50:95 of 0.609 
with 576.35 GFLOPs and 105.74 million parameters. 
The Swin-B backbone further increases the 
computational demand with 613.78 GFLOPs and 
143.77 million parameters, achieving an mAP50:95 of 
0.614 (Table 5). 

 
 

Table 5. Comparison of GFLOPs and number of parameters 
between Cascade Mask (CM) R-CNN, Mask R-CNN using 
Swin Transformer backbone, and YOLOv12m, lowest 
computational cost in bold green. 

 
Models GFLOPs Parametres (M) 

CM R-CNN Swin-S 576.35 105.74 
CM R-CNN Swin-B 613.78 143.77 

Mask R-CNN Swin-T 103.85 47.39 
YOLOv12m 67.5 20.2 

 
While Swin Transformer backbones deliver high 

accuracy, their significantly higher computational 
requirements make them less practical for real-time 
applications compared to YOLOv12m. This balance 
between better performance and better efficiency 
positions YOLOv12m as a superior choice for 
automated microbiological analysis, especially in 
resource-constrained environments. 
 
 
4. Discussion 
 

While this study demonstrates the superior 
performance of YOLOv12m in detecting and 
enumerating CFUs in Petri dish images, there are 
several areas for further exploration and improvement. 
Firstly, the study did not fully utilize the  
high-resolution subset nor the native lower-resolution 
(2048 × 2048 pixels) available in the AGAR dataset. 
Training and evaluating YOLOv12m on  
higher-resolution images could potentially enhance its 
detection accuracy, especially for smaller or more 
densely packed colonies. Additionally, the model was 
trained for only 50 epochs due to computational 
resource constraints. With more extensive 
computational resources, a longer training duration 
could further refine the model performance and 
generalization capabilities. 

Furthermore, this study focused on the medium 
version of YOLOv12, which offers a balanced  
trade-off between computational efficiency and 

detection accuracy. However, the extra-large version 
of YOLOv12(x), although more computationally 
intensive, has been shown to achieve even better 
results on the COCO 2017 dataset. Investing in the 
extra-large version could yield higher detection 
accuracy, making it a valuable avenue for future 
research. Additionally, comparative studies with other 
state-of-the-art models, such as YOLOv8x [16], which 
has been reported to achieve a mAP50:95 of 0.767 [14] 
in this task, would provide valuable insights into the 
strengths and limitations of YOLOv12. 
 
 
5. Conclusion 
 

The results of this study demonstrate that 
YOLOv12m significantly outperforms both traditional 
CNN-based models and Vision Transformer models in 
detecting and enumerating CFUs in Petri dish images. 
YOLOv12m achieved an impressive mAP50:95 of 
0.706 on the lower-resolution subset of the AGAR 
dataset, surpassing the performance of Faster R-CNN 
(0.560) and Cascade R-CNN (0.594), as well as ViT 
models like Cascade Mask R-CNN and Mask R-CNN 
with Swin Transformer backbones. This superior 
performance can be attributed to YOLOv12 advanced 
attention-centric approach, which allows it to focus on 
relevant features while ignoring irrelevant details, and 
its optimized architecture, which balances speed  
and accuracy. 

YOLOv12m ability to maintain high detection 
accuracy while keeping computational costs relatively 
low (67.5 GFLOPs and 20.2 million parameters) 
makes it an ideal choice for real-time applications. 
With an inference time of just 36 milliseconds per 
image (or 27 images per second) on an NVIDIA RTX 
4060 (16 GB), which can be considered a low- to  
mid-range GPU, YOLOv12 meets the demands of 
real-time microbiological analysis, ensuring both 
speed and precision. In contrast, ViT models, while 
delivering competitive, yet lower, accuracy, come with 
significantly higher computational requirements, 
making them less practical for real-time use. 

The attention mechanisms in YOLOv12 enable the 
model to efficiently process high-resolution images 
and handle the variability in colony sizes, shapes, and 
densities. This makes YOLOv12m robust and reliable 
for automated microbiological workflows, where 
accuracy and speed are critical. YOLOv12 represents 
a major advancement in automated microbiological 
analysis, offering a powerful and efficient solution for 
real-time CFU detection. Its superior performance, 
combined with its computational efficiency, positions 
YOLOv12 as a leading tool for ensuring the safety and 
quality of products across various industries. 
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Summary: Analyzing ultrasonic vocalizations (USVs) is crucial for understanding rodents' affective states and social 
behaviors, but the manual analysis is time-consuming and prone to errors. Automated USV detection systems have been 
developed to address these challenges. Yet, these systems often rely on machine learning and fail to generalize effectively to 
new datasets. To tackle these shortcomings, we introduce ContourUSV, an efficient automated system for detecting USVs 
from audio recordings. Our pipeline includes spectrogram generation, cleaning, pre-processing, contour detection,  
post-processing, and evaluation against manual annotations. To ensure robustness and reliability, we compared ContourUSV 
with three state-of-the-art systems using an existing open-access USV dataset (USVSEG) and a second dataset we are releasing 
publicly along with this paper. On average, across the two datasets, ContourUSV outperformed the other three systems with a 
1.51× improvement in precision, 1.17× in recall, 1.80× in F1 score, and 1.49× in specificity while achieving an average speed 
up of 117.07×. 
 
Keywords: Rodents, Ultrasonic vocalizations (USVs), Contour detection, Signal processing. 
 

 
1. Introduction 
 

Rodents, such as rats and mice, use ultrasonic 
vocalizations (USVs) as a form of communication in 
various behavioral contexts. These vocalizations, 
which occur at frequencies beyond the range of human 
hearing, have become an important tool for studying 
the emotional states and social behaviors of rodents 
[1]. For example, USVs are often emitted in response 
to stress, mating, or social interactions, providing 
valuable insights into the neural mechanisms 
underlying these behaviors. Understanding and 
analyzing USVs can thus shed light on how rodents 
communicate, how their behavior changes in response 
to different stimuli, and how these processes may relate 
to human neuropsychiatric disorders such as anxiety, 
depression, post-traumatic stress disorder (PTSD), and 
autism [1]. 

USVs are high-frequency sounds (20-120 kHz) 
emitted by rodents in various behavioral contexts (e.g., 
mating, aggression, and distress) [1]. Traditional 
manual analysis of USVs is time-consuming, labor-
intensive, and error-prone. Additionally, manual 
methods suffer from subjectivity, with different 
researchers potentially annotating the same data 
differently [2]. Automated systems can address these 
limitations by accelerating the analysis of large 
datasets, improving consistency, and minimizing the 
need for manual annotation. Several systems have been 
developed using signal processing and machine 
learning techniques [3-9]. However, these systems 

often fail to generalize to new datasets and sometimes 
require extensive manual intervention [10]. Moreover, 
training deep learning models can be time-consuming 
and resource-intensive, leaving a significant carbon 
footprint. 

We propose a novel automated and  
energy-efficient approach for detecting rodent USVs 
using robust contour detection on spectrograms. We 
evaluated the reliability of our system on two  
open-access datasets and compared its performance to 
state-of-the-art methods (DeepSqueak [4], Joseph the 
mouse (JTM) [6], and USVSEG [9]). Through 
rigorous experimental analysis, the ContourUSV 
detection pipeline demonstrated robustness across 
different datasets, offering a reliable and scalable 
solution for large-scale USV analysis. 

 
 

2. Related Works 
 

Several automated systems have been developed to 
detect USVs. MUPET [3], an open-source software, 
uses signal processing techniques for rapid, 
unsupervised analysis of mouse USVs. It provides 
automated discovery and comparison of syllable types 
(i.e., call types) across strains and social conditions. It 
also incorporates noise removal and time-stamping 
features to facilitate behavioral analysis. DeepSqueak 
[4] automates USV detection and classification using 
deep neural networks, clustering, and supervised 
classification. JTM [6] proposes two alternative 
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techniques to detect USVs: Morphological Geodesic 
Active Contour (GAC) [11] and Faster R-CNN [12]. 
While GAC offers a configurable, non-trainable 
approach, Faster R-CNN uses neural networks to learn 
from annotated data. HybridMouse [7] uses a 
combination of convolutional and recurrent neural 
networks for automatic USV identification and 
annotation, outperforming DeepSqueak in recall and 
F1 score metrics. VocalMat [5] provides tools for USV 
detection and classification, emphasizing user 
customization. It supports supervised and 
unsupervised methods but requires significant manual 
intervention. A-MUD [8] is an algorithm designed to 
detect mouse USVs automatically using the STx 
acoustic software. A-MUD achieves lower error rates 
than commercial software and accelerates USV 
detection 4 to 12 times compared to manual 
annotations. USVSEG [9] uses signal processing 
techniques to detect USV segments amid noise and 
track spectral peaks for syllables. The performance of 
this system has been demonstrated across several 
rodent species on an open-access dataset of the same 
name. BootSnap [10] can classify calls in syllables but 
does not propose a USV detection method, relying 
instead on existing detectors. The authors of BootSnap 
compared multiple detection methods, including 
DeepSqueak, USVSEG, A-MUD, and MUPET. They 
found A-MUD and USVSEG to have higher true 
positive rates and A-MUD to have lower false 
detection rates. A study of multiple deep-learning 
algorithms for neonatal murine USV detection 
demonstrated high performance on an open-access 
dataset of recordings [13]. However, this dataset does 
not include manual annotations. Therefore, we could 
not use it for comparative analysis. Despite these 
advances, the accuracy and reliability of these systems 
across datasets and experiments remain understudied. 
Further, most of these systems use advanced machine 
learning approaches for a task that might be solvable 
by lighter, more predictable signal processing 
approaches. Occam’s Razor suggests it might be 
advantageous to look at computationally simpler and 
lighter approaches if they perform at least similarly. 

 
 

3. Datasets 
 

To assess the performance of our approach, we 
released an open-access dataset called USCMed and 
utilized another open-access dataset, USVSEG. 

 
 

3.1. USCMed Dataset 
 

The USCMed Dataset was collected at the 
University of South Carolina School of Medicine. This 
dataset involves a study designed to examine 
individual differences in rat fear conditioning and 
extinction. During this protocol, we recorded the USVs 
from male Long Evans rats (N = 27) exposed to the 
following four experimental conditions (Fig. 1;  
[14, 15]): 

1) Fear Acquisition: Three light foot shocks paired 
with 10-second 2 kHz tones and separated by a 
one-minute inter-stimulus interval were 
administered; 

2) Contextual Fear: Recording in the same 
environment (cage), but without tones  
or shocks; 

3) Cued Fear Extinction: Twenty tones presented 
at one-minute intervals without co-occurring 
shocks, in a different environment; 

4) Extinction Recall: Same as for 3), but two  
days later. 

The audio was recorded at 250 kHz with UltraVox 
XT (Noldus Information Technology, Inc., Leesburg, 
VA). Each recording was manually annotated for the 
USV call start and stop times, frequency at max 
amplitude, and mean amplitude. These manual 
annotations served as the gold standard for evaluating 
our ContourUSV detector. Along with this paper, we 
released a subset of the USCMed dataset with the 
audio recordings (N = 27) and gold standard 
annotations for the Context trial. The USCMed dataset 
is openly available at https://doi.org/10.5281/ 
zenodo.14211069. 

 

 
 

Fig. 1. Paradigm used to collect the USCMed dataset 
(created with BioRender.com). 

 
 

3.2. USVSEG Dataset 
 

The USVSEG [9] dataset consists of recordings 
from mice (N = 20; C57BL/6J, BALB/c, and  
Shank2- adult males, and juvenile C57BL/6J mice), 
rats (N = 7; adult females, in distressing and pleasant 
contexts), and gerbils (N = 2), recorded at 250 kHz 
using a commercial condenser microphone and an A/D 
converter (UltraSoundGate, Avisoft Bioacoustics, 
Berlin, Germany; SpectoLibellus2D, Katou Acoustics 
Consultant Office, Kanagawa, Japan). The USVSEG 
dataset includes manual USV annotations and is 
openly available at https://doi.org/10.5281/ 
zenodo.3428023. 

 
 

4. ContourUSV Detection Pipeline 
 

This section describes the architecture of the 
ContourUSV pipeline as shown in Fig. 2. The code for 
ContourUSV is available on GitHub 
(https://github.com/lina-usc/contourusv). 

 
 

4.1. Spectrogram Generation 
 

The initial step in our pipeline involves generating 
spectrograms from raw audio recordings. These 
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spectrograms serve as the basis for the subsequent 
processing and detection. We first read the audio 
signals from the.wav files (Fig. 3) using the Python 
SciPy library [16] and transform these signals into 
spectrograms (i.e., time-frequency representations) 
using the Short-Time Fourier Transform (STFT) 
implemented in MNE-Python [17]. The STFT was 
computed using a window size of 2,500 samples and a 
time step of 5 ms. To ensure the pipeline is not 
sensitive to differences in sample rate, we used the 
resample function from MNE-Python to resample 
signals to 250 kHz, if necessary. This function uses the 
same approach as SciPy, relying on the Fast Fourier 
Transform. We focused on the 15-115 kHz frequency 
range to isolate relevant signal components. The 
frequency resolution (100 Hz) is determined by the 
window size and the sampling frequency. The result is 
a 2D NumPy array representing the spectrogram data 
(time-frequency representation). Then, the NumPy 
array is passed to the spectrogram pre-processing and 
cleaning stage. 

 

 
 

Fig. 2. Architecture of the ContourUSV detection pipeline. 
 

 
 

Fig. 3. Example audio signal loaded from a.wav file (8s). 
 

For visualization, we tested various Matplotlib [18] 
colormaps, and chose 'viridis' as it provided the best 
visual clarity for analyzing USVs (Fig. 4). 

 

 
 

Fig. 4. Raw spectrogram from audio recording (8 s). 

4.2. Pre-processing and Cleaning 
 

The raw spectrogram data is further pre-processed 
to enhance the contrast between the USVs and the 
background noise. First, we apply a median filter from 
SciPy to the spectrogram data. Median filtering is used 
to reduce noise in the image while preserving edges. It 
replaces each pixel’s value with the median value in its 
neighborhood. Then, we normalize the spectrogram 
using OpenCV [19] to scale the pixel intensity values 
of the filtered image to the [0, 255] range. The 
normalization function then casts the result to an 8-bit 
unsigned integer type, as standard for grayscale (single 
channel) images and required for OpenCV 
thresholding functions [18]. Next, we apply a 
thresholding approach to binarize the spectrogram. We 
chose Otsu’s thresholding [20] instead of global 
thresholding to dynamically determine the optimal 
threshold for consistent binarization of spectrograms. 
This eliminates the need for a fixed threshold, 
enhancing robustness against noise and ensuring a 
clear separation of USVs from the background for 
reliable contour detection. To improve the visibility of 
the USVs, a contrast-limited adaptive histogram 
equalization (CLAHE) [21] is applied to the binary 
spectrograms. This technique enhances the local 
contrast of the images and makes the USV contours 
more prominent by applying an adaptive histogram 
equalization with a user-defined contrast limit to 
prevent over-amplification of noise. Finally, we apply 
morphological operations [18], specifically closing, 
which is a combination of dilation followed by erosion, 
which smooths object boundaries, fills small holes, and 
connects close objects in the spectrograms. This step 
ensures that the detected USV contours are continuous 
and well-defined as shown in Fig. 5. 

 

 
 

Fig. 5. Cleaned and pre-processed spectrogram. 
 
 

4.3. Contour Detection 
 

The contour detection stage focuses on identifying 
and extracting the contours of USVs from the  
pre-processed spectrogram image data. This critical 
step allows for the precise localization of USVs in the 
time and frequency domains. In the pre-processing 
steps, applying CLAHE after the first binarization 
results in non-binary spectrograms. Otsu’s 
thresholding is applied again to binarize the 
spectrograms, providing a clear separation between the 
USVs and the background and allowing for more 
reliable contour detection. 
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Contours were then extracted from the thresholded 
binary spectrograms using the OpenCV findContours 
function. This function retrieves the external contours, 
representing the boundaries of the detected USVs.  
Fig. 6 illustrates an example of detected USVs. 

 

 
 

Fig. 6. Detected contours and bounding boxes (green). 
 

4.4. Post-processing Annotations 
 

For each detected contour, a bounding box is 
computed using the OpenCV boundingRect function 
(see Fig. 6) and the time and frequency boundaries are 
calculated based on the position and dimensions of the 
bounding box relative to the image. 
 
 
4.5. Evaluation 
 

To assess the performance of ContourUSV, we 
compared the detected USVs against our gold standard 
(manual annotations) using the performance metrics 
shown in Fig. 7. First, we obtained both the predicted 
calls (system output) and actual calls (gold standard, 
obtained through manual annotations). Each 
annotation (manual or automated) included the start 
and end times of detected USVs. These annotations 
were used to create two sets of binary labels (predicted 
and actual) encoding the presence or absence of USVs 
for every time point in the audio signal. For this 
process, time windows specified in the annotations 
were mapped to sample indices of the audio files. To 
evaluate the system’s performance, we calculated key 
metrics by comparing the predicted binary labels to the 
gold standard (actual) labels across all time points. 
True positives (TP), false positives (FP), false 
negatives (FN), and true negatives (TN) were defined 
as usual (Fig. 7, left panel). Using these values, we 
computed the precision, recall, F1 score, and 
specificity (Fig. 7, right panel). Finally, we aggregated 
the results across all recordings to compute the mean 
and standard deviation for each metric, providing an 
overall performance evaluation of the detection 
systems across various conditions and datasets. The 
statistical significance of performance differences 
between detectors was assessed with paired t-tests. 

 
 

5. Results 
 

This section presents the detection results for the 
USCMed and USVSEG datasets tested with 
ContourUSV, DeepSqueak, JTM, and USVSEG. 

 
 

Fig. 7. Definition of the metrics used for assessing  
the performance of the different systems. 

 
5.1. USCMed Dataset Results 
 

Tables 1 and 2 present the results on the USCMed 
Dataset for the Fear Acquisition and the Context 
conditions, respectively. Bold is used to indicate 
statistical significance when comparing the 
performances of the best vs. second-best detectors. 
Table 3 and Table 4 show the paired t-test results 
comparing the best-performing model with the other 
models for Fear Acquisition and Context conditions, 
respectively. Statistical significance is defined at  
p < 0.05. 

 
 

Table 1. USCMed dataset fear acquisition trial results 
(Mean ± SD).  

 
Metric DeepSqueak JTM ContourUSV USVSEG 

Precision 0.23 ± 0.15 
0.77 ± 
0.35 

0.86 ± 0.23 0.42 ± 0.24

Recall 0.97 ± 0.05 
0.59 ± 
0.17 

0.76 ± 0.23 0.89 ± 0.10

F1 Score 0.35 ± 0.19 
0.62 ± 
0.23 

0.80 ± 0.22 0.53 ± 0.26

Specificity 0.22 ± 0.14 
0.94 ± 
0.16 

0.99 ± 0.01 0.71 ± 0.16

 
 

Table 2. USCMed dataset context trial results  
(Mean ± SD).  

 
Metric DeepSqueak JTM ContourUSV USVSEG 

Precision 0.17 ± 0.11 
0.99 ± 
0.01 

0.99 ± 0.01 0.51 ± 0.17

Recall 1.00 ± 0.00 
0.22 ± 
0.09 

0.87 ± 0.05 0.42 ± 0.10

F1 Score 0.28 ± 0.15 
0.36 ± 
0.12 

0.93 ± 0.02 0.44 ± 0.08

Specificity 0.21 ± 0.13 
1.00 ± 
0.00 

1.00 ± 0.00 0.95 ± 0.01

 
The computation time was also recorded for each 

model on the USCMed dataset. ContourUSV 
performed detection in 359 seconds (i.e., 6 minutes) 
which is 7.26× faster than DeepSqueak’s execution 
time of 2,607 seconds (i.e., more than 43 minutes), 
226.89× faster than JTM’s execution time of  
81462 seconds (i.e., more than 22 hours), and 51.32× 
faster than USVSEG’s execution time of  
18426 seconds (i.e., more than 5 hours). 
 
5.2. USVSEG Dataset Results 
 

Table 5 presents the evaluation metrics for 
different species on the USVSEG dataset. The paired 
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t-test results for these comparisons are presented in 
Table 6 for all species. 
 
 

Table 3. Fear acquisition trial paired t-test results 
comparing the best-performing model with other models  

for each metric. 
 
Metric (Best Model) Comparison T-value P-value

Precision (ContourUSV) 
DeepSqueak 

JTM 
USVSEG 

17.80 
2.09 

11.64 

1.04e-15

4.69e-2 
1.37e-11

Recall (DeepSqueak) 
ContourUSV 

JTM 
USVSEG 

4.51 
11.34 
4.28 

1.32e-4 
2.37e-11

2.42e-4 

F1 Score (ContourUSV) 
DeepSqueak 

JTM 
USVSEG 

12.98 
4.90 
7.37 

1.31e-12

4.86e-5 
1.02e-7 

Specificity (ContourUSV) 
DeepSqueak 

JTM 
USVSEG 

28.39 
1.66 
9.23 

1.53e-20

1.09e-1 
1.57e-9 

 
 

Table 4. Context trial paired t-test results comparing  
the best-performing model with other models  

for each metric. 
 
Metric (Best Model) Comparison T-value P-value 

Precision (ContourUSV) 
DeepSqueak 

JTM 
USVSEG 

30.73 
3.60 
11.98 

2.63e-18
1.77e-03
1.39e-10

Recall (DeepSqueak) 
ContourUSV 

JTM 
USVSEG 

-10.83 
38.80 
25.41 

8.09e-10
2.66e-20
1.07e-16

F1 Score (ContourUSV) 
DeepSqueak 

JTM 
USVSEG 

22.53 
25.10 
32.26 

1.10e-15
1.36e-16
1.01e-18

Specificity (ContourUSV) 
DeepSqueak 

JTM 
USVSEG 

26.08 
-4.15 
17.83 

6.46e-17
4.98e-04
9.53e-14

 
Since ControurUSV has been designed and tested 

in the context of a fear acquisition protocol, we focused 
on detecting rat distress calls. To test if the lower 
performance of this system on the USVSEG dataset 
could be due to a failure to detect 50 kHz (positively 
valenced) calls, we additionally tested the detectors on 
only the 22 kHz calls from the USVSEG dataset. In 
this context, ContourUSV achieved an F1 Score of 
0.96 ± 0.03, while USVSEG, DeepSqueak, and JTM 
obtained F1-scores of 0.97 ± 0.01, 0.40 ± 0.22, and 
0.55 ± 0.17, respectively. 

 
 

6. Discussion 
 

Our primary goal was to develop an automated 
approach for detecting USVs in rodents that addresses 
the limitations of existing methods in terms of 
reliability, accuracy, simplicity, and computational 
demand. This focus on efficiency and simplicity is 
particularly important for applications that require 
real-time or embedded implementation. For instance, 
embedding such a detector in hardware could enable 
the online detection of USVs during an experiment, 

allowing researchers to dynamically modify 
experimental conditions based on rodent vocalizations. 
Such functionality could be especially beneficial in 
biofeedback applications, where immediate responses 
to vocalizations are crucial, such as in studies of social 
interaction or stress response. Additionally, a 
computationally lightweight system facilitates 
deployment in resource-constrained environments, 
such as portable devices for field studies. Since every 
second of recordings takes about 0.057 s to process 
with ContourUSV on a modern laptop (MacBook Pro), 
the computational efficiency of this approach would 
permit such real-time USV detection. Although we did 
not design ContourUSV for such a purpose, only 
minimal modifications should be required to adapt the 
code for such applications. However, we did not test 
ContourUSV's performance for online detection, a 
topic that would require additional research. 
 
 

Table 5. ContourUSV evaluation metrics  
on the USVSEG dataset. 

 
Metric DeepSqueak

JTM 
Gerbil 

ContourUSV USVSEG 

Precision 0.17 ± 0.00 0.97 ± 0.02 0.66 ± 0.17 0.72 ± 0.04 
Recall 0.99 ± 0.05 0.28 ± 0.21 0.97 ± 0.01 0.97 ± 0.03 

F1 Score 0.29 ± 0.01 0.42 ± 0.26 0.78 ± 0.12 0.82 ± 0.04 
Specificity 0.04 ± 0.02 1.00 ± 0.00 0.89 ± 0.08 0.92 ± 0.01 

Mouse 
Precision 0.10 ± 0.10 0.62 ± 0.45 0.39 ± 0.27 0.73 ± 0.14

Recall 0.99 ± 0.02 0.16 ± 0.19 0.59 ± 0.17 0.91 ± 0.05
F1 Score 0.18 ± 0.14 0.23 ± 0.25 0.42 ± 0.23 0.80 ± 0.09

Specificity 0.09 ± 0.09 0.69 ± 0.47 0.89 ± 0.08 0.97 ± 0.03 
Rat

Precision 0.24 ± 0.12 0.98 ± 0.02 0.84 ± 0.29 0.95 ± 0.03
Recall 1.00 ± 0.00 0.24 ± 0.23 0.84 ± 0.17 0.90 ± 0.07

F1 Score 0.37 ± 0.16 0.35 ± 0.28 0.81 ± 0.24 0.93 ± 0.05 
Specificity 0.06 ± 0.06 1.00 ± 0.00 0.96 ± 0.07 0.99 ± 0.01 

All Species 
Precision 0.14 ± 0.11 0.73 ± 0.41 0.52 ± 0.33 0.78 ± 0.15 

Recall 0.99 ± 0.02 0.19 ± 0.20 0.68 ± 0.21 0.91 ± 0.06 
F1 Score 0.23 ± 0.17 0.27 ± 0.26 0.54 ± 0.28 0.83 ± 0.10

Specificity 0.08 ± 0.08 0.79 ± 0.41 0.91 ± 0.08 0.97 ± 0.03 

 
 
Table 6. Paired t-test results comparing the best-performing 
model with other models for each metric on the USVSEG 

dataset (all species).  
 
Metric (Best Model) Comparison T-value P-value 

Precision (USVSEG) 
DeepSqueak 

JTM 
ContourUSV 

-28.24 
-0.67 
-5.20 

4.04e-22 
5.09e-01 
1.62e-05 

Recall (DeepSqueak) 
ContourUSV 

JTM 
USVSEG 

8.25 
22.12 
7.22 

5.67e-09 
2.85e-19 
7.38e-08 

F1 Score (USVSEG) 
DeepSqueak 

JTM 
ContourUSV 

-26.06 
-13.79 
-6.58 

3.54e-21 
5.29e-14 
3.89e-07 

Specificity (USVSEG) 
DeepSqueak 

JTM 
ContourUSV 

-64.55 
-2.29 
-4.12 

5.22e-32 
2.96e-02 
3.02e-04 

 
When we initiated this project, we also wanted this 

detector to be open-source and not require proprietary 
software (e.g., MATLAB). Furthermore, the limited 
availability of high-quality USV datasets with reliable 
gold standard annotations is one of the key challenges 
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faced in our experiments as well as in this research 
field. Hence, we released a subset of our dataset 
(including the manual annotations) publicly to support 
USV detection benchmarking in future studies. 

In our comparative analysis, ContourUSV had a 
high F1 score for both datasets, demonstrating strong 
reliability. Large performance differences between 
datasets highlight the significant effect that dataset 
properties have on the effectiveness of these systems. 
Since we used the USCMed Dataset for development, 
ContourUSV may have an unfair advantage over other 
systems on this dataset. The same is likely true for the 
evaluation of the USVSEG detector on the dataset of 
the same name. Nevertheless, ContourUSV shows 
superior reliability across datasets. Benchmarking 
against additional datasets would be required to 
corroborate this superior reliability. 

Moreover, for the USCMed dataset, the results 
published in this paper are only for male rats on the 
fear acquisition and context trials. Thus, this dataset 
contains mostly 22 kHz call types. However, 
experiments with female rats and other experimental 
conditions within this data collection protocol, which 
contain a wider variety of call types (e.g., 50 kHz 
calls), are in progress, and results for these experiments 
will be published in future work. We are also 
investigating various denoising approaches, including 
single-channel decompositions. We hope such 
additions will allow the automatic removal of various 
noise sources and make ContourUSV even more 
reliable when processing recordings with unexpected 
sources of artifacts. 

 
 

7. Conclusion 
 

The ContourUSV detection method was designed 
to identify and localize USVs within spectrograms 
generated from audio recordings. This method 
employs a combination of preprocessing techniques, 
including median filtering, Otsu’s thresholding, 
morphological operations, and contour extraction, to 
enhance and detect the contours of USVs. 
ContourUSV utilizes the OpenCV findContours 
function to accurately detect and annotate the temporal 
and frequency boundaries of each vocalization. 

Our comparative analysis shows that ContourUSV 
consistently achieves higher mean F1 scores in the 
USCMed dataset. On the other hand, for the USVSEG 
dataset, ContourUSV performs as the second best after 
the USVSEG model. Since the development of 
ContourUSV utilized the USCMed dataset, which 
includes only male rats, its performance on the 
USVSEG dataset, comprising various rodent species, 
does not match that of the USVSEG model. 
Nevertheless, ContourUSV still outperforms both 
DeepSqueak and JTM in terms of F1 scores. The gap 
in recall and accuracy for ContourUSV is likely due to 
the lack of extensive noise reduction or filtering. On 
average, across the two datasets, ContourUSV 
outperformed the other three systems with a 1.51× 
improvement in precision, 1.17× in recall, 1.80× in F1 

score, and 1.49× in specificity, while achieving an 
average speed up of 117.07×. 

Clustering and classifying calls for syntax analyses 
is an important area of future development for USV 
analyses. Without accurately detecting the calls first, 
these next stages of behavior analysis based on USVs 
cannot bring fruitful results. Thus, the ContourUSV 
detection pipeline serves an important role in 
advancing USV-based analysis of rodent behavior. 
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Summary: This paper introduces a novel method for analyzing functional connectivity employing the absolute value of the 
complex Pearson correlation coefficient and the relative Intersection of Confidence Intervals algorithm. The method adapts 
window sizes based on signal variability and the window size is used for connectivity assessment. The approach was validated 
using synthetic EEG signals generated via the Kuramoto model, which ensured a realistic representation of connectivity 
dynamics. Additionally, the method was tested on real EEG data to evaluate its practical applicability. Results demonstrated 
the potential for differentiating low and high connectivity cases, with clear correlations between window size and statistical 
properties of phase differences. The findings highlight the potential of this adaptive methodology to provide more accurate 
and meaningful insights into functional connectivity, especially in dynamic systems where traditional fixed-window 
approaches fall short. 
 
Keywords: EEG signal, Functional connectivity analysis, Adaptive window size. 
 

 
1. Introduction 
 

EEG is an electrophysiological technique used to 
observe neurophysiological changes related to 
postsynaptic activity in the neocortex, essentially 
recording the brain's electrical activity [1]. Brain 
connectivity analysis is generally categorized into two 
types: structural and functional. Structural connectivity 
analysis involves tracking the direction of fibers 
between different regions of the brain or within a 
specific region [2]. Functional connectivity analysis, 
on the other hand, examines the amount of information 
transferred between brain regions or within a single 
region [3]. This type of analysis is commonly split into 
two categories: undirected and directed. Undirected 
connectivity measures assess the strength of 
connectivity, whereas directed connectivity measures 
evaluate both the strength and direction of connectivity 
between the regions of interest. Various approaches 
can be employed to assess functional connectivity, 
including phase synchronization, generalized 
synchronization metrics, linear temporal correlation, 
and others [4-6]. In this paper, we concentrate on 
undirected connectivity measures. The phase locking 
value (PLV) [7, 8] and the weighted phase lag index 
(wPLI) [9] are among the most frequently used 
undirected phase synchronization metrics. The main 
difference between these two metrics is their ability to 
reduce the effects of volume conduction. In [3], it is 
demonstrated how the absolute and imaginary 
components of the complex Pearson correlation 

coefficient (CPCC) exhibit properties similar to those 
of the PLV and wPLI metrics. 

In this paper, a new measure for phase connectivity 
is proposed. It is based on dynamic connectivity 
analysis using absolute value of the complex Pearson 
correlation coefficient (absCPCC) as the connectivity 
measure and the relative Intersection of Confidence 
Intervals (RICI) algorithm for determining the window 
size [10]. The window size obtained in this way is used 
to assess the connectivity strength. 

The development of a new measure is presented 
and applied to both synthetic and real EEG signals. It 
is also applicable to other methods of measuring brain 
activity, such as functional magnetic resonance 
imaging (fMRI) [11], blood-oxygen-level dependent 
(BOLD) signals [12], magnetoencephalography 
(MEG) signals [13], and others. 

 
 

2. Methods 
 

The RICI algorithm estimates the optimal window 
size based on the statistical properties of the signal, 
specifically through confidence intervals (hence the 
name, Intersection of Confidence Intervals) [10]. It 
relies on calculating the ratio between a quantitative 
criterion (ܴ) and a threshold value (ܴ), which serves 
to detect significant shifts in connectivity. For each 
time point, an initial window size is selected, which 
defines the duration of the temporal segment for 
analysis. For each window, a confidence interval (CI) 
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is computed, representing the range within which the 
true value of functional connectivity is expected to lie. 
Based on the computed CI, the upper and lower 
boundaries are determined. The minimal and maximal 
values of the upper and lower boundaries are updated 
based on the new data, ensuring accuracy in the 
analysis. With the updated boundary values, the ratio ܴ is recalculated. When ܴ > ܴ, the process stops, and 
the last window for which this condition was not met 
is used to calculate the functional connectivity 
(absCPCC) in that window for the observed sample  
[3, 4]. absCPCC is defined as: 
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where Δ߶௫భ,௫మ, is the instantaneous phase difference, ܣ௫ is the instantaneous amplitude of a complex signal. 

When there is a stable phase difference, indicating 
high connectivity, the RICI algorithm identifies low 
variability interval and extends the window size as 
much as possible, up to the point where there is a 
significant change in the statistical properties of the 
signal. Conversely, when phase connectivity is low, 
the statistical properties of the phase differences 
fluctuate frequently, resulting in a narrow  
window size. 

The proposed measure of phase connectivity is the 
average window size determined by the RICI 
algorithm applied to the dynamically calculated 
absCPCC. 

 
 

3. Results 
 

3.1. Synthetic Signals 
 

The signals used in this study are synthetically 
generated using the Kuramoto model. Each signal is a 
mixture of two components. The first component of the 
signal is synchronized within the signal group, 
ensuring coherence, while the second component is 
arbitrary, introducing randomness that makes the 
signals more realistic and representative of natural 
signal dynamics [14]. The proposed method for phase 
connectivity analysis was applied to pairs of 
synthetically generated signals with varying 
connectivity strengths. 

Fig. 1, illustrates the results of connectivity 
analysis using different approaches. Phase differences 
were analyzed within a 10 second window. PLV below 
0.11 and absCPCC of 0.012 indicates low 
connectivity. The histogram of phase differences is 
presented in Fig. 1a, where the fairly uniform phase 
difference distribution confirms low connectivity for 
this pair of electrode. 

The time evolution of phase differences, shown in 
Fig. 1b, reflects the characteristics of the model used 

for generating the synthetic signals. The time diagram 
indicates the absence of periods with stable phase 
differences. 
 
 

 
 
Fig. 1. Connectivity analyses for an electrode pair with a low 
connectivity, a) histogram of the phase differences in a 10 s 
window, b) time diagram of the same pair of signals,  
c) window size variations due to different statistical 
properties of the phase differences. 
 
 

Finally, Fig. 1c presents the time diagram of the 
window size. The relatively low window size is 
attributed to the low phase connectivity of the signals 
and the high variability in the statistical properties of 
the phase differences. The RICI algorithm maintains a 
narrow window size. The maximum value of the 
window size was set to 2560 samples, corresponding 
to the observation period. The average relative window 
size was 0.10, further confirming the low connectivity, 
as expected. 

Different behavior of the connectivity measure is 
anticipated in cases of high connectivity. Connectivity 
analysis for a synthetically generated signal pair with 
high phase connectivity is shown in Fig. 2. In Fig. 2a, 
phase differences are highly concentrated around a 
major peak at 1 radian and a minor peak at 
approximately -2.19 radians. The time diagram of the 
phase differences is shown in Fig. 2b. The two signals 
are phase-synchronized for longer periods around  
1 radian and shorter periods around -2.19 radians. 
 
 

 
 
Fig. 2. Connectivity analyses for an electrode pair  
with a high connectivity, a) histogram of the phase 
differences in a 10 s window, b) time diagram of a phase 
difference of the same pair of signals, c) window size 
variations due to different statistical properties of the phase 
differences. 
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In this case also, the window size is an effective 
indicator of the stable statistical properties of phase 
differences. The window size aligns with the periods 
of stable phase synchronization between the signals. 
During intervals of shorter phase synchronization, the 
statistical variations are higher, resulting in a lower 
window size maintained by the RICI algorithm. 

Pairs with varying phase connectivity were 
generated, and this pair had the largest window size of 
2258 samples and the lowest window size  
154 samples. The average relative window size was 
0.88, while PLV and absCPCC were 0.74 and 0.51, 
respectively, confirming the high connectivity. 
 
 
3.2. Real Signals 
 

For testing the proposed connectivity measure on 
real signals, the "SPIS Resting State Dataset" [15] was 
used. This dataset is multimodal and consists of EEG 
signals as well as electrooculogram (EOG) signals. For 
the purpose of evaluating the proposed static 
functional connectivity measure, only 10 seconds of 
EEG signals recorded in the eyes-closed (EC) 
condition for the participant "S02_restingPre_EC" 
were used (ensuring consistency with the duration of 
the synthetic signal, an interval of 15 to 25 seconds is 
selected), with a sampling frequency of 256 Hz. 

Fig. 3 presents the outcomes of connectivity 
assessment using different methodologies. Phase 
differences were evaluated over a 10-second time 
window. A PLV value of 0.075 and an absCPCC of 
0.023 indicate a weak level of connectivity. In Fig. 3a, 
the histogram of phase differences displays a relatively 
uniform distribution, reinforcing the notion of low 
connectivity between this particular electrode pair. 

 
 

 
 
Fig. 3. Connectivity analyses for an electrode pair (P8-CP2) 
with a low connectivity, a) histogram of the phase differences 
in a 10 s window, b) time diagram of the same pair of signals, 
c) window size variations due to different statistical 
properties of the phase differences. 
 
 

The temporal progression of phase differences, 
illustrated in Fig. 3b, shows fluctuations over time. The 
absence of prolonged periods with stable phase 
differences further supports the weak connectivity. 

Fig. 3c shows the evolution of the window size over 
time. The relatively small window size results from the 
high variability in the statistical properties of the phase 

differences and the limited phase coupling of the 
signals. The RICI algorithm dynamically adapts the 
window size, keeping it relatively narrow. The average 
relative window size was recorded at 0.25, estimating 
the low connectivity. 

A contrasting scenario is depicted in Fig. 4, which 
represents an instance of high phase connectivity. In 
Fig. 4a, the phase differences are predominantly 
concentrated around a primary peak, highlighting the 
presence of strong synchronization between  
the signals. 

 
 

 
 

Fig. 4. Connectivity analyses for an electrode pair (P8-P4) 
with a high connectivity, a) histogram of the phase 
differences in a 10 s window, b) time diagram of a phase 
difference of the same pair of signals, c) window size 
variations due to different statistical properties of the phase 
differences. 

 
 
The temporal representation of phase differences in 

Fig. 4b demonstrates extended intervals of stable phase 
relationships, indicating significant connectivity. 

The evolution of the window size, displayed in  
Fig. 4c, correlates with these stable synchronization 
periods. The RICI algorithm effectively adjusts the 
window size to match the variations in statistical 
stability. The largest observed window size was  
2560 samples, while the smallest was considerably 
reduced during phases of transient connectivity. The 
average relative window size of 0.94, alongside PLV 
and absCPCC values of 0.72 and 0.79, respectively, 
substantiates the strong connectivity between  
the signals. 
 
 
4. Conclusions 
 

The proposed methodology offers alternative 
approach to functional connectivity estimation. By 
dynamically adjusting the window size, using the RICI 
algorithm, this method successfully adapts to signal 
variability. The method was applied to synthetic and 
real signals with both high and low connectivity. The 
results confirm its potential in distinguishing between 
varying levels of connectivity, as demonstrated 
through synthetic and real EEG signal testing. This 
adaptive approach holds promise for applications in 
neuroscience and other fields requiring precise 
connectivity assessments. Future work will explore 
real-world fMRI, BOLD, MEG datasets. 
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Summary: In this study, convolutional neural network (CNN) technologies were implemented to detect chart patterns in stock 
market data. To train the CNN, a dataset comprising chart pattern images was developed, utilizing a synthetic pattern 
generation script and implemented in a program coded in Python. The resulting tool enables the identification of various chart 
pattern types across a specified set of companies and time periods. Beyond identifying patterns, the tool assesses whether the 
detected patterns fulfill their intended objectives. This capability allows the tool to compute the success rate of a given pattern 
over a defined period and for the selected companies. Additionally, the tool can identify whether a pattern is currently forming. 
 
Keywords: Convolutional neural network, Technical analysis, Stock market, Chartist patterns. 
 

 
1. Introduction 
 

This paper presents a sophisticated tool to assist 
investors in their decision-making. One of the 
principles of technical analysis is that market 
movements are cyclical, so, as preached by technical 
analysis [1], knowing the past can help us to anticipate 
the future. The use of chart patterns is one of the most 
widely employed technical analysis techniques by 
traders. However, it is not the only one in technical 
analysis, as there are various other methods such as 
moving averages, Bollinger Bands, and many others, 
which are beyond the scope of this work. 

The implemented tool will provide the number of 
patterns formed in a period for a subset of companies, 
and with the exact percentage of success or failure of 
each of the analyzed chart patterns. This approach 
enables investors to refine their investment strategies 
by analyzing specific time periods and subsets of 
companies, such as those within a targeted sector. By 
identifying the most effective chart patterns and their 
success rates, investors can make more informed 
decisions. Additionally, the tool facilitates the 
detection of emerging patterns in the analyzed 
companies, providing valuable insights for timely 
investment opportunities. 

This work will use CNN (Convolutional Neural 
Network) to be chosen over a TCN (Temporal 
Convolutional Network) for training the detection of 
chart patterns in stock markets due to its ability to 
effectively capture spatial hierarchies and local 
patterns in visual data. Since chart patterns are often 
represented in image-like formats, CNNs are  
well-suited for detecting these patterns due to their 
strength in processing grid-like data. TCNs, on the 
other hand, are more specialized for handling 
sequential or temporal data with long-range 
dependencies, which, while useful for time-series 
forecasting, were less relevant in this context where 
local spatial patterns are more crucial for accurate 
pattern recognition. 

The tool has been implemented using Python, and 
the handling of large volumes of data through 
specialized libraries such as ‘Pandas’. In addition, we 
have focused on the interpretation and presentation of 
the results in an accessible and useful way for the end 
user. Ultimately, it will allow for precise determination 
of the number of chart patterns identified for a set of 
companies, as well as the success rate of these patterns. 

 
 

1.1. Patterns in Chart Analysis 
 
Within technical analysis there is chartist analysis, 

which studies the shape of price charts to predict the 
future trend. These repeating patterns are chart 
structures that allow us to know, with some degree of 
certainty, future prices. Chartist analysis focuses on 
identifying periodic repetitions in the time series,  
non-linear patterns that can help us anticipate market 
movement. 

According to the study by Farias et al. [2], chartist 
analysis was only used in 3 of the 85 relevant articles 
analyzed. For example, Dawson and Steeley [3] 
analyzed the existence of repetitive patterns in the UK 
stock market. More generally, Friesen et al. [4] also 
devote their efforts to the study of chartist techniques. 

For this work, the search of chart patterns such as 
double top, double bottom, ascending triangle, 
descending triangle, head and shoulders, and inverted 
head and shoulder for a given period of dates in the 
selected companies will be allowed, and the tool will 
also calculate the percentage of companies that reach 
the objective with the patterns found. 

 
 

1.2. Data Creation for Neural Network Training 
 

The creation of the training database consisted of 
two phases. First, a script was created to search for 
historical patterns and save the image and a.csv file 
with the pattern points in a directory. The pattern 
search was conducted visually, supported by 
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specialized websites such as Finviz, and a previously 
developed tool that uses the dynamic time warping 
technique for pattern detection, enabling the automatic 
identification of such patterns. Then, by hand, the 
highest quality patterns of those found were chosen 
and a script was programmed to create synthetic 
patterns based on a pattern passed by a parameter. 

Data augmentation through the generation of 
synthetic images enhances the diversity of training 
data, particularly interesting when real data is scarce or 
difficult to obtain. In this paper, it involved mainly the 
scaling. By doing so, it helps prevent overfitting and 
improves the network's generalization ability. 
Additionally, synthetic images can be used to create 
cases that are not easily found such as some type of 
chart patterns. In summary, synthetic images expand 
the training dataset, improve model accuracy and 
robustness, and address challenges related to limited or 
hard-to-acquire data. 

To train this model, a laptop (GF63 Thin 11UC) 
with an NVIDIA® GeForce RTX™ 3050 graphics 
card and limited capacity for training models was used. 
The PyTorch library was employed, and two models 
were trained: one with a network for each pattern and 
a general network for all patterns. The architecture for 
both is the same, with only the number of neurons in 
the output layer differing. There are two output 
neurons in the case of a network per pattern and seven 
neurons in the case of a general network corresponding 
to the six types of patterns in the tool and the 'no 
pattern' class. These training sessions were carried out 
at night and in no case took more than 8 hours. It was 
used 2300 images per pattern type for the training. 

Once the network development was completed, the 
training process began, with the data divided into 
training and testing sets, using 80 % for training and 
the remaining 20 % for testing. The training set was 
used to adjust the model parameters, while the test set, 
which has not been seen during training, is used to 
evaluate how the model generalizes new and 
independent data, allowing us to detect problems such 
as overfitting, where the model performs well on the 
training data but fails on unseen data. At the end of the 
training, a file with the model parameters is saved for 
later use. For both the pattern-specific networks and 
the general network, the accuracy on the testing set 
ranged from 96 % to 98 %, depending on the pattern. 

Chart pattern classification labels typically refer to 
the categories or types of patterns identified in price 
charts. These labels include continuation patterns, 
which suggest the continuation of an existing trend 
(e.g., triangles, flags, wedges); reversal patterns, which 
indicate a potential trend reversal (e.g., head and 
shoulders, double top, double bottom); and 
consolidation patterns, which represent market 
indecision with sideways price movement (e.g., 
rectangles, symmetrical triangles). 

To obtain synthetic patterns, new points were 
added to the original pattern, based on the average 
between the two points between which they were 
introduced, and existing points were modified by 
subtracting or adding between 10 % and 50 % of their 

value. The number of points to be added is a random 
value between 30 % and 50 % of the original number 
of points, while the number of points to be modified is 
a random value between 40 % and 70 %. These 
percentages were determined empirically. Excessively 
conservative percentage adjustments result in synthetic 
patterns that closely resemble the original, whereas 
overly aggressive adjustments can cause the pattern to 
lose its structural integrity. Fig. 1 illustrates an 
example of a run in which three synthetic patterns were 
generated based on a head and shoulders pattern. 

 

 
 

Fig. 1. Original pattern and 3 synthetic patterns based  
on this pattern. 

 
The network consists of convolutional layers that 

extract local features from the image, detecting 
patterns such as edges, textures, and basic shapes at 
different levels of abstraction. Each convolutional 
layer applies filters to the input image and generates 
feature maps that highlight certain visual properties. 
The output of the convolutional layer is passed to a 
pooling layer that reduces the dimensionality of the 
feature maps, reducing the number of parameters and 
the computational load, as well as providing some 
translation invariance (small variations of the image). 
Finally, the output of the last pooling layer is flattened 
into a feature vector and linear layers are applied that 
perform the final combination and transformation of 
the features extracted by the convolutional layers, 
allowing the network to make classification decisions 
based on the combined features learned from the 
images. Training the network consisted of adjusting 
the model parameters (weights and biases) by 
backpropagation and iterative optimization, using a 
training data set. During this process, the model makes 
predictions on the training data, calculates the loss or 
error by comparing the predictions with the actual 
labels, and then adjusts the parameters to minimize this 
loss using the stochastic gradient descent algorithm. 
The first and second steps were automatic. In training, 
functions were developed that converted window to 
image and image to tensor. In the case of a pattern 
network, the function that performs the classification 
receives a list of models (one model for each type of 
pattern) and each model performs the classification, 
which returns the predicted class (whether it is the 
pattern) and a confidence value, at the end it keeps the 
class with the highest confidence. For the joint 
network, it is simpler, only the classification must be 
performed, and it returns the predicted class. 

The pattern network takes on average 50 % longer 
but finds on average 20 % more patterns, so we opted 
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for this one. Finally, a study was conducted to compare 
the search for historical patterns using a neural 
network. The study presented in this paper used  
10 companies from the financial sector and  
10 companies from the technological sector. The 
financial companies were V, JPM, BLK, SAN, BBVA, 
BBD, DB, NDAQ, BBAR, FCF. The technological 
companies were AAPL, MSFT, NVDA, ORCL, 
CSCO, NOK, WDC, LOGI, LPL, NEON. 

Fig. 2 presents examples of identified patterns and 
their alignment with predefined objectives. It 
illustrates a head-and-shoulders pattern successfully 
achieving its target, contrasted with another that fails 
to do so. Additionally, an inverted head-and-shoulders 
pattern meets the target, whereas ascending and 
descending triangles do not. The figure also includes a 
double-top pattern that successfully fulfills the  
target criteria. 

 
 

 
 

Fig. 2. Detection of chart patterns using the implemented tool. Some identified patterns meet the expected objective,  
while others do not. 

 
 

Table 1 shows the number of chart patterns found 
for the testing including financial and technological 
companies from January 1, 2005 until July 3, 2023. 
 
 
4. Conclusions 
 

In this work, a tool for pattern detection using 
convolutional neural networks for pattern recognition 
has been developed. The neural network allows us to 
find different patterns in the stock market. In addition, 
several studies were conducted to determine the best 
parameters for the search and the quality of the patterns 
found. The algorithm for historical patterns is based on 
scanning the same price chart with different window 
sizes to ensure we get all the existing patterns. At the 
same time, the algorithm for current patterns detection 
is based on studying a time window that ends on the 
current day and progressively narrowing it down to 
find the pattern or the same one but with greater 
precision. The developed tool also incorporates an 
alternative pattern search technique based on Dynamic 
Time Warping, which falls beyond the scope of this 
paper. The results demonstrate that this technique 
enables the creation of a functional and valuable tool 

for investors, allowing them to accurately determine 
the success rates of various chart patterns over specific 
time periods. Additionally, the tool facilitates analysis 
at different levels, whether for individual companies, 
sector-based groupings, or customized selections 
based on investor preferences. 
 
 

Table 1. Results for Technological and Financial 
Companies. 

 

 
Technological 

companies 
Financial 
companies 

Chart Patterns Found Target Found Target 
Ascending 
triangle  

110 51 % 118 43 % 

Descending 
triangle 

68 44 % 97 42 % 

Double bottom 184 62 % 115 53 % 

Double top 212 67 % 163 60 % 
Head and 
shoulder  

43 65 % 35 69 % 

Inverted Head 
and shoulders 

70 69 % 62 69 % 
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5. Future Work 
 

This research is a work in progress, and several 
aspects require further exploration. For future work, 
we aim to expand the range of detected patterns. The 
tool will be enhanced to display stop-loss levels and 
target prices, as well as to indicate the most promising 
and lowest-risk investments using color-coded signals. 
Another key area for future study is the potential biases 
in synthetic data generation, particularly analyzing 
whether artificially modifying patterns affects  
real-world generalization. Additionally, future work 
will focus on training the model with greater 
computational power to enhance its performance and 
accuracy. These improvements will contribute to a 
more robust and reliable approach in future studies. 
Additionally, we plan to conduct studies across 
different time periods and market sectors to evaluate 
the effectiveness and reliability of chart patterns  
over time. 
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Summary: The management of infant excretion is a vital component of childcare, with significant implications for digestive 
health and overall well-being. Although traditional methods primarily focus on diagnosing gastrointestinal disorders, the  
real-time prediction of total daily diaper changes based on bowel sounds remains an underexplored area. To address this gap, 
we proposed a prediction method utilizing bowel sounds data recorded within the first 10 minutes after morning feeding. Using 
a custom-designed bowel sound sensor, data were collected from 12 infants (aged 2 to 11 months) over 49 days. The data were 
analyzed for six distinctive bowel sound features, and the number of sounds within a 10-minute window was counted, reflecting 
the volume of bowel sounds. By summing the three lowest bowel volume features, we subsequently established ten 
classification patterns to correlate these features with the total number of daily diaper changes. This approach provides an 
accurate prediction of diaper change frequency, supporting mothers in planning outings and reducing their caregiving burdens. 
 
Keywords: Infant, Bowel sounds, Diaper change, Prediction, Classification, Breastfeeding, Childcare support. 
 

 
1. Introduction 
 

Managing infant excretion is an essential aspect of 
childcare, playing a crucial role in maintaining both the 
infant’s health and overall well-being. The frequency 
and timing of excretion are closely linked to an infant’s 
gastrointestinal function and overall health status, as 
highlighted in previous studies [1, 2]. Among the 
various biological signals reflecting gastrointestinal 
activity, bowel sounds have gained attention as a  
non-invasive and real-time indicator of digestive 
function. Recent research has explored the potential 
applications of bowel sound analysis in assessing 
digestive conditions and monitoring excretory 
behavior. Such analyses have been utilized in the 
diagnosis of gastrointestinal disorders and in general 
health management. 

In the context of childcare, diaper changes 
constitute a significant source of stress for caregivers, 
particularly during outings. Surveys indicate that 
approximately 80 % of mothers experience concerns 
regarding diaper changes when outside the home [3]. 
The unpredictable nature of an infant’s excretion 
schedule makes daily planning difficult and adds to 
caregivers’ physical and mental burden. Furthermore, 
in Japan, the total fertility rate reached a historic low 
of 1.20 in 2023 [4], underscoring the urgent need for 
enhanced childcare support. As societal trends 
continue to shift toward lower birth rates, 
technological advancements in childcare support 
systems are becoming increasingly important for 
alleviating parental burdens. Despite these challenges, 
research on predicting infants’ daily excretion patterns 
based on bowel sounds remains limited. While 
previous studies have explored methods for analyzing 

bowel sounds to assess gastrointestinal health, few 
have investigated their potential in predicting 
excretion frequency. In particular, the feasibility of 
predicting long-term excretion trends using short-term 
bowel sound data has not been thoroughly examined. 
The extent to which bowel sounds contribute to 
excretion prediction remains unclear, and there is a 
lack of research on how bowel sound-based predictive 
systems could be integrated into childcare support 
frameworks to reduce caregiver stress. Addressing 
these research gaps could provide significant benefits 
in both parenting and broader healthcare applications. 

This study aims to develop a predictive model for 
estimating the total number of diaper changes in a day 
based on bowel sound data recorded during the first  
10 minutes after the morning feeding. This hypothesis 
is grounded in existing findings that bowel sounds 
reflect digestive activity and are indicative of 
subsequent excretion patterns. By extracting and 
analyzing key features from bowel sound data, we seek 
to improve the accuracy of excretion frequency 
prediction. A reliable prediction system would allow 
caregivers to anticipate diaper changes in advance, 
facilitating better daily planning and reducing the 
uncertainty associated with infant excretion. 

The findings of this research are expected to 
contribute to the advancement of data-driven childcare 
support systems, offering new insights into infant 
excretion behavior and its relationship with 
gastrointestinal activity. This study seeks to establish a 
novel approach to excretion prediction, ultimately 
providing practical solutions for caregivers and 
enhancing the overall quality of childcare in  
modern society. 
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2. Methods 
 
2.1. Ethics 
 

This study has been approved by the Emergency 
Research Ethics Committee based on the "Medical 
Research Involving Human Subjects" guidelines of 
Ehime University Hospital (Approval No. 1810003). 
 
 
2.2. Data Collection 
 

In this research, bowel sounds were assessed using 
a custom-designed device developed under medical 
guidance, affixed inside an infant's diaper. This device 
was distributed to each household, and parents were 
asked to use it for the measurements. The device is 
affixed by the mother during the measurement process. 
During feeding sessions, which typically last around 
10 minutes, infants remain in a relatively stable state, 
enabling the observation of characteristic bowel 
sounds during this period. Additionally, the device 
collects sounds while minimizing noise caused by the 
infant's body movements. As a result, bowel sounds 
were recorded for 10 minutes following each feeding 
session. Furthermore, the total daily diaper change 
count (TDDC) was systematically recorded. In 
collaboration with physicians, six distinct bowel 
sounds were classified based on their duration and 
maximum frequency (MF), as outlined in Table 1. 
 
 

Table 1. 6 bowel sounds. 
 

 MF [kHz] Duration [ms] 

BS1 0.80 0.5 

BS2 0.35 2.0 

BS3 1.00 - 

BS4 0.90 - 

BS5 0.30 0.5 

BS6 0.40 1.0 
 
 
2.3. Extraction of Bowel Sounds 
 

For the analysis of bowel sounds recorded during 
the first 10 minutes of the breakfast session, the Short-
Time Fourier Transform (STFT) was applied to the 
bowel sounds x[n] using Equation (1). 
 

 ܺ[݊, ߱] = ∑ ݊]ݔ +݉]߱[݉]݁ିఠே	ୀ	   (1) 
 

In this process, ω[m] represents the window 
function, which is a Hamming window, with a 
sampling frequency of 16,000 Hz, a window size of 
256, and a window shift size of 64. For the power 
spectrum calculation, Equation (2) was utilized.  

 
ࢎ,࢚ࡿ  = 10݈ ଵ݃(|ܺ[݊, ߱]|ଶ) (2) 

 
This allowed for the visualization of bowel sounds 

using a spectrogram, as illustrated in Fig. 1. 

 
 

Fig. 1. Visualisation of observed sounds. 
 
For the state shown in Fig. 1, a significant amount 

of noise was present, necessitating noise removal. As 
bowel sounds typically occur at frequencies above  
100 Hz [5, 6], low-frequency components below  
100 Hz were removed using Equation (3) to mitigate 
noise interference. 
 

 ݄ ≤ 100: ܵ௧, = −80 (3) 
 

Additionally, to minimize environmental noise, 
power spectra with bowel sounds that greater than 
environmental noise were obtained. The threshold (5), 
which allowed for the most accurate extraction of 
bowel sounds, was used. Therefore, components with 
spectral intensities below the threshold (5) were 
excluded using Equation (4). 
 

 ܵ௧, ≤ 5: ܵ௧, = −80 (4) 
 

This noise reduction resulted in a spectrogram, as 
shown in Fig. 2. 

 

 
 

Fig. 2. Observed sound after noise reduction. 
 

However, as shown in Fig. 3(a) and Fig. 4(a), this 
noise reduction process may lead to the loss of some 
bowel sounds; hence, a compensation procedure was 
implemented. This compensation procedure includes 
both "time compensation" and "frequency 
compensation." Time compensation involves filling in 
the missing time τ in the power spectrum ܵ௧ିఛ, by 
using the power spectrum immediately before the gap ܵ௧,, such that Equation (5). In this process, the 
allowable time loss is set to 0.048 seconds or less. 
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 ܵ௧, 	= ܵ௧ିఛ, (5) 
 

The results of this compensation are shown  
in Fig. 3(b). 

 

 
                              (a)                               (b) 

 
Fig. 3. Time compensation. 

 
Similarly, frequency compensation involves filling 

in the missing frequency η in the power spectrum ܵ௧ିఎ, by using the power spectrum immediately 
before the gap ܵ௧,, such that Equation (6). In this 
process, the allowable frequency loss is set to 60 Hz  
or less. 

 
 ܵ௧, 	= ܵ௧ିఎ, (6) 

 
The results of this compensation are shown  

in Fig. 4(b). 
 

 
                               (a)                              (b) 

 
Fig. 4. Frequency compensation. 

 
The six types of bowel sounds are extracted based 

on the method outlined in Table 1. The extraction 
process involves using the maximum frequency, 
continuous time, and frequency bandwidth for power 
spectra above a certain threshold. There are three steps 
in the extraction procedure: (i) checking whether each 
feature exceeds the maximum frequency,  
(ii) examining the continuous frequency bandwidth 
with power spectrum values above a certain threshold, 
and (iii) examining the duration of continuous time 
with power spectrum values above a certain threshold. 
After performing steps (i) to (iii), sounds that meet the 
conditions for each feature are identified as  
bowel sounds. 

The number of occurrences of each of the six bowel 
sounds during the first 10 minutes after feeding is then 
counted and referred to as the "Bowel Sounds Count 
(BSC)." This methodology allows for the extraction of 
bowel sound volumes (BSC1 to BSC6) corresponding 
to the six identified types. 

2.4. Calculation of Four Features 
 

The BSC varies among individuals, leading to 
variability in the data. To account for individual 
differences, each bowel sound volume was normalized 
by the total bowel sound volume across all six 
categories. This standardized measure was termed the 
Bowel Sounds Proportion (BSP). Since a higher BSP 
value is considered to have a greater impact on bowel 
motility, we defined a new feature, BSP7, by summing 
the BSP values of BS3, BS4, and BS6, which are 
characterized by lower BSP values. This modification 
enhances the emphasis on bowel sounds with higher 
BSP values. In subsequent analyses and discussions, 
four features (BSP1, BSP2, BSP5, and BSP7) are used. 
 
 
2.5. 10 Pattern Classifications 
 

Data processing was conducted for 49 days, as 
outlined in Sections 2.2 and 2.3. The four extracted 
features were visualized, with the horizontal axis 
representing BSP and the vertical axis indicating 
TDDC, as shown in Fig. 5. Notably, the feature 
patterns exhibited variability even when TDDC values 
remained constant, indicating the need for 
classification. Specifically, TDDC values of 7 and 8 
were each divided into two groups, while TDDC value 
9 was further subdivided into three categories, 
resulting in ten distinct classification patterns. These 
patterns were assigned numerical labels (Nos.). 
Subsequently, interquartile ranges were computed for 
the four features within each pattern, and the medians 
were used to generate the graph depicted in Fig. 1. In 
this figure, the horizontal axis represents the 
classification numbers and TDDC, while the vertical 
axis represents BSP. The findings suggest that TDDC 
can be estimated based on the correlation between the 
four BSP features and the classification patterns shown 
in Fig. 6. 
 
 
3. Simulations 
 

To assess the efficacy of the proposed 
methodology, bowel sounds were recorded using a 
compact device during the initial 10 minutes  
post-feeding. Following the processing of the acoustic 
data as described in Sections 2.3 and 2.4, the data were 
grouped into ten distinct classification patterns. The 
results indicated that the proposed method achieved a 
prediction accuracy of 83 % in forecasting TDDC. 

 
 

4. Conclusions 
 

This study aimed to alleviate mothers' childcare 
responsibilities by establishing a system to predict 
Total Daily Diaper Changes (TDDC) using infant 
bowel sounds data. The method developed extracted 
key features from bowel sound recordings taken during 
the first 10 minutes after feeding, categorizing them 
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into ten distinct patterns. The results demonstrated 
high predictive accuracy, indicating that bowel sounds 
can serve as a reliable indicator for excretion 
prediction. 

These findings suggest that the approach could 
assist in organizing outings and daily activities, 
reducing the mental and physical burdens on mothers 
by providing accurate predictions of diaper changes. 
This predictive capability helps caregivers plan their 

day with less uncertainty regarding infant excretion 
patterns, thereby easing their caregiving 
responsibilities. Moreover, this study underscores the 
potential of bowel sound analysis as an effective, non-
invasive tool for monitoring gastrointestinal health and 
predicting excretion behavior. The integration of such 
data-driven systems in childcare could enhance 
support for caregivers and contribute to improved 
infant health management. 

 
 

 
 

Fig. 5. 10-pattern classification. 
 

 

 
 

Fig. 6. Plot 49 days of data. 

 
In conclusion, this research presents a novel 

method for predicting excretion patterns, which can 
benefit both caregivers and healthcare systems. Future 
research could examine broader applications and 
integrate this method with other health-monitoring 
technologies to further improve childcare and 
healthcare support. 
 
 
5. Limitations and Future Directions 
 

The study has five limitations. 
In this study, we developed a system capable of 

predicting the total number of diaper changes per day. 
However, the system does not estimate the specific 
timing of diaper changes, which may not provide 
sufficient information for mothers. Therefore, a future 
direction of this research is to construct a system that 
predicts the timing of infant bowel movements. 

There is variability in the number of diaper changes 
due to the inclusion of infants ranging from one to 
eleven months old, as well as differences in gender and 
dietary intake. To address this, future work aims to 
develop personalized predictive models tailored to 
individual infants. 

This study only uses data from 12 infants over a 
span of 49 days, which limits the statistical reliability 
of the findings. Therefore, to evaluate the 
generalizability of the model, larger datasets will be 
required for future validation. 

The goal of this research was to predict the total 
number of diaper changes per day. In the future, we 
plan to develop a mobile application that notifies 
mothers of the prediction results in real-time, which 
would help reduce their burden. 

Challenges such as environmental noise and infant 
movements were also identified. To improve accuracy, 
better noise reduction techniques and more sensitive 
sensors will be necessary. 
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Summary: Accurately modeling effective connectivity (EC) is critical for understanding how the brain processes and 
integrates sensory information. Yet, it remains a formidable challenge due to complex neural dynamics and noisy 
measurements such as those obtained from the electroencephalogram (EEG). Model-driven EC infers local (within a brain 
region) and global (between brain regions) EC parameters by fitting a generative model of neural activity onto experimental 
data. This approach offers a promising route for various applications, including investigating neurodevelopmental disorders. 
However, current approaches fail to scale to whole-brain analyses and are highly noise-sensitive. In this work, we employ 
three deep-learning architectures—a transformer, a long short-term memory (LSTM) network, and a convolutional neural 
network and bidirectional LSTM (CNN-BiLSTM) network—for inverse modeling and compare their performance with 
simulation-based inference in estimating the Jansen-Rit neural mass model (JR-NMM) parameters from simulated EEG data 
under various noise conditions. We demonstrate a reliable estimation of key local parameters, such as synaptic gains and time 
constants. However, other parameters like local JR-NMM connectivity cannot be evaluated reliably from evoked-related 
potentials (ERP). We also conduct a sensitivity analysis to characterize the influence of JR-NMM parameters on ERP and 
evaluate their learnability. Our results show the feasibility of deep-learning approaches to estimate the subset of learnable  
JR-NMM parameters. 
 
Keywords: EEG, Neural mass model, LSTM, Transformers, Simulation-based inference, Model-Driven analysis. 
 

 
1. Introduction 
 

Neural mass models (NMMs) have emerged as 
powerful computational tools for simulating collective 
neuronal behavior at a mesoscopic scale, offering a 
mathematically tractable approach to modeling brain 
dynamics for the past five decades [12, 26]. These 
models provide a crucial bridge between microscopic 
neural activity and macroscopic neuroimaging signals, 
enabling quantitative analysis of normal brain 
functions and pathophysiological conditions [5]. 
NMMs create computationally efficient abstractions 
that can be simulated at scale across brain regions by 
capturing the dynamics of the average activity of 
neuronal populations as systems of coupled differential 
equations. Integrating NMMs with computational data 
analysis pipelines has enabled significant advances in 
neuroimaging [19, 4]. Modern implementations of 
these models allow researchers to simulate the 
transition between stable and pathological brain states, 
providing a basis for biomarker development and 
quantitative analysis of neurological disorders. NMMs 
can be particularly effective for modeling epileptiform 
activity [25], oscillatory disturbances [11], and state 
transitions in disorders like Alzheimer's disease [21]. 

Effective connectivity (EC) captures the causal 
influence that neural systems exert on one another. 
Unlike functional connectivity, which merely 
describes statistical dependencies, EC captures the 

directional influence of one neural population on 
another. Dynamic causal modeling (DCM) [4] 
represents a principled algorithmic approach to 
estimating these causal relationships from neural 
signals. This approach frames the problem as a 
Bayesian model inversion and explains observed data 
through a generative model of coupled neural masses. 
Bayesian techniques and, hence, DCM [7, 3, 6] are 
computationally demanding and, therefore, are 
generally inadequate for handling large datasets or 
real-time analysis. 

Simulation-based inference (SBI) has recently 
emerged as a computationally efficient approach for 
parameter estimation in complex dynamical systems 
[22]. SBI algorithms, including Sequential Neural 
Posterior Estimation (SNPE) [15], leverage advances 
in amortized inference to approximate posterior 
distributions without requiring explicit likelihood 
calculations. These methods can handle complex 
forward models but face diminishing performance as 
the parameter spaces increase, creating computational 
bottlenecks for whole-brain analyses. 

Deep learning architectures present a promising 
paradigm for parameter recovery in complex 
dynamical systems. Recent advances in neural network 
architectures - particularly sequence models like 
Transformers [1] and Long Short-Term Memory 
(LSTM) [27] networks can efficiently learn the 
mapping between model parameters and observable 
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outputs. These networks compress the  
high-dimensional functional relationship between 
parameters and outputs, enabling rapid inference once 
trained. Recent research has successfully applied these 
techniques to connectome-based NMMs for functional 
magnetic resonance imaging (fMRI) [8], suggesting 
broader applicability to neuroimaging data analysis. 

In this paper, we systematically evaluate four 
approaches for parameter inference in the Jansen-Rit 
Neural Mass Model (JR-NMM): (1) an 
EEGTransformer architecture using multi-head 
attention mechanisms and Transformer’s Encoder 
components only, (2) an LSTM network specialized 
for sequential data processing, (3) a convolutional 
neural network and bidirectional LSTM (CNN-
BiLSTM), and (4) the SBI approach using SNPE. We 
benchmark these algorithms' performance in 
estimating nine JR-NMM parameters (as defined later, 
in Table 1) from EEG data under varying noise 
conditions. Through comprehensive computational 
experiments and sensitivity analyses, we establish the 
relative strengths of each approach and identify which 
parameters can be recovered from EEG signals 
reliably. This computational benchmarking study lays 
essential groundwork for developing robust algorithms 
that infer local and global parameters from empirical 
EEG recordings. 
 
 
2. Background 
 

Brain dynamics span multiple spatial and temporal 
scales. Accordingly, its computational modeling 
ranges from detailed biophysical simulations of 
individual neurons to abstract population-level models 
of regional activity [4, 16, 17]. NMMs occupy a crucial 
middle ground in this landscape, providing 
computationally tractable abstractions of neural 
population dynamics anchored in neurophysiological 
mechanisms. These models distill the essential 
properties of neural circuits while remaining amenable 
to efficient numerical simulation, making them 
valuable tools for neuroinformatics and computational 
neuroscience. 

When formalized in 1995 [10], JR-NMM 
represented a significant advance in mesoscopic brain 
modeling. This model extended earlier mathematical 
formulations by Lopes da Silva [12] by implementing 
a cortical column as a system of coupled differential 
equations representing interacting populations of 
pyramidal cells, excitatory interneurons, and inhibitory 
interneurons. This architecture enables the simulation 
of various EEG rhythms and event-related potentials 
(ERPs) through appropriate parameter configurations. 
The computational efficiency and biological 
plausibility of models like JR-NMM made them 
foundational components in whole-brain simulation 
platforms, including frameworks like The Virtual 
Brain (TVB) [18], neurolib [2], and FastDMF [19]. 

The JR-NMM is formulated as a system of three 
second-order ordinary differential equations (ODEs) 
and generally transformed into six first-order ODEs. 

This formulation enables efficient numerical 
integration using standard ODE solvers such as Euler 
or Runge-Kutta methods. The model parameters – 
which include synaptic gains (Ae, Ai), time constants 
(be, bi), connectivity strengths (a1-a4), and an overall 
scaling factor (C) - determine the dynamics of the 
system. Variations in these parameters can produce 
diverse computational behaviors, including fixed 
points, limit cycles, and chaotic attractors, 
corresponding to different patterns observed in the 
electroencephalogram (EEG) [20]. 

Challenges in parameter estimation in NMMs stem 
from several algorithmic and mathematical factors. 
First, the nonlinear nature of these models creates a 
complex relationship between parameters and 
observable outputs. Second, the models exhibit partial 
identifiability, where multiple parameter combinations 
can produce nearly identical outputs, making their 
fitting a mathematically ill-posed inverse problem. 
Third, the high-dimensional parameter space creates a 
computationally intensive search problem that scales 
poorly with traditional optimization methods. Finally, 
the stochastic nature of neural recordings due to 
measurement noise and unmeasured inputs introduces 
additional complexity. 

Conventional approaches to NMM parameter 
estimation have primarily relied on Bayesian 
inference. DCM [4] implements a variational Bayesian 
algorithm to approximate posterior distributions over 
model parameters. While mathematically elegant, this 
implementation relies on gradient-based optimization 
under a linear approximation of model dynamics, 
limiting its applicability to large-scale models or 
highly nonlinear systems [17]. The computational 
complexity of this algorithm increases exponentially 
with the number of brain regions, making whole-brain 
analyses computationally prohibitive without 
substantial high-performance computing resources. 

Recent advances in SBI [22] have introduced new 
paradigms for parameter estimation in complex 
dynamical systems. Unlike traditional Bayesian 
methods that require explicit likelihood functions, SBI 
algorithms like SNPE approximate posterior 
distributions directly through repeated simulations 
[15]. These methods leverage neural density estimators 
to learn the conditional distribution of parameters 
given observed data. While SBI provides greater 
flexibility for complex forward models, the rigid 
requirements for the experimental data to closely 
match the generated simulation data in all aspects (i.e., 
noise characteristics, free parameters, exact priors, and 
other underlying properties) limits this approach [24]. 

Deep learning architectures offer alternative 
strategies for parameter recovery in NMMs. 
Transformer models built on self-attention 
mechanisms can capture long-range dependencies in 
time series without the sequential constraints of 
recurrent networks. Meanwhile, LSTM provides 
specialized computational structures for processing 
sequential information through gated memory cells 
that can retain information over an extended period. 
Both architectures can effectively learn complex 
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mappings between model parameters and observable 
outputs when trained on sufficiently large  
simulation datasets. 

The study of effective connectivity (EC) extends 
beyond methodological considerations, addressing 
fundamental questions about information processing in 
neural systems. EC quantifies the causal influence 
neural populations exert on each other, providing 
insights into functional integration and segregation 
within the brain. Through analyses of neuroimaging 
data, disruptions in EC have been implicated in various 
neurological and psychiatric conditions. Developing 
computationally efficient and robust methods for EC 
inference could enhance both the theoretical 
understanding of brain organization and practical 
applications in clinical neuroscience. Our work 
extends the computational neuroscience literature by 
systematically benchmarking four distinct algorithmic 
approaches to local parameter inference in the  
JR-NMM. We establish each method's relative 
computational efficiency and accuracy by comparing 
EEGTransformer, LSTM, and CNN-BiLSTM 
architectures, and an SNPE-based simulation approach 
across different noise conditions. This comparative 
analysis provides crucial insights into which 
parameters are most reliably recoverable from EEG 
data. The resulting benchmark offers a foundation for 
developing more sophisticated algorithms to infer local 
(within a brain region) and global (between brain 
regions) parameters in whole-brain simulations based 
on NMMs. 
 
 
3. Methods 
 

Neural Mass Model: We implemented the JR-
NMM [10] to simulate cortical activity. It is governed 
by the system of coupled differential equations (1). In 
this system, indices 0, 2, and 4 represent the pyramidal, 
excitatory, and inhibitory neuron populations, 
respectively. The output signal y(t) = a2y2 - a4y4 
represents the difference between the pyramidal's 
excitatory and inhibitory postsynaptic potentials. This 
value is a proxy for EEG sources because EEG is 
thought to reflect mainly the postsynaptic potentials in 
the apical dendrites of pyramidal cells [14]. Table 1 
shows the default parameter values and ranges used in 
our simulations based on physiologically plausible 
values from previous studies [10, 4]. 

ሶݕ  	= 	 ,ଵݕ ଶሶݕ  	= ,ଷݕ ସሶݕ  	= 	 ଵሶݕ ,ହݕ = ܫܾܵ൫ܣ + ܽଶݕଶ − ܽସݕସ൯ − 2ܾݕଵ − ܾଶݕ,ݕଷሶ 	= (ݕଵܽ)ܾܵܣ	 − 2ܾݕଷ − ܾଶݕଶ,	ݕହሶ 	= ܫ)ܾܵܣ	 + ܽଷݕ) − 2ܾݕହ − ܾଶݕସ. (1) 

 
Simulation Protocol: The simulations were 

performed with a temporal resolution of 1 ms. Each 
simulation consisted of 1) an 800 ms transient period 
to allow the system to reach a steady state, 2) a 200 ms 
baseline period before stimulus onset, and 3) stimulus 
events with an inter-stimulus interval of 1 second, 
presented 60 times. We modeled the stimulus with a  

50 ms wide rectangular pulse with a 60 mV amplitude 
for pyramidal cells and a 30 mV amplitude for 
inhibitory interneurons. Moran et al. [13], we 
incorporated voltage-dependent synaptic mechanisms 
in inhibitory interneurons to better capture 
feedforward inhibition dynamics. The primary 
differential equations were solved using a forward 
Euler integration method. 

 
 

Table 1. Standard parameter settings for Jansen-Rit model. 
Only the value from parameters with a range is estimated  

in this study. 
 

Parameter Description Default Range 

Ae Excitatory gain 3.25 mV 2.6-9.75 mV 

Ai Inhibitory gain 22 mV 17.6-110 mV 

be Excit. time const. 100 s⁻ ¹ 5-150 s⁻ ¹ 

bi Inhib. time const. 50 s⁻ ¹ 25-75 s⁻ ¹ 

C Connect. const. 135 65-1350 

a1 Connect. param. 1.0 0.5-1.5 

a2 Connect. param. 0.8 0.4-1.2 

a3 Connect. param. 0.25 0.125-0.375 

a4 Connect. param. 0.25 0.125-0.375 

vmax Max firing rate 5 s⁻ ¹ — 

v� Firing threshold 6 mV — 

r Sigmoid steepness 0.56 — 

 
From Neural Activity to EEG: We implemented 

an EEG forward model to transform NMM output into 
realistic EEG signals. The output signal from the  
JR-NMM (difference between pyramidal and 
inhibitory potentials) was scaled by a gain factor of  
10-6 to account for the scale simulated signals to 
physiologically realistic EEG amplitudes (10-100	µV). 
This signal was then used as a source located to a 
specific cortical region ("caudalmiddlefrontal-lh") 
using the FreeSurfer average (fsaverage) brain 
template, as defined in MNE-Python. A forward 
solution was computed using the Boundary Element 
Method (BEM) to model volume conduction. Sensor 
projections were created for a standard 64-channel 
BioSemi EEG montage. To test the robustness of our 
inference algorithms under different signal-to-noise 
ratio (SNR) conditions, we added noise to the 
simulated EEG signals using a scaling approach. We 
scaled the ad hoc noise covariance matrix, generated 
using MNE's make_ad_hoc_cov function, with a factor 
varying from 0 to 1 in steps of 0.1 to simulate different 
noise levels added to synthetic EEG signals. A noise 
factor of 0 represented noise-free simulations, while a 
factor of 1.0 applied the full noise covariance, resulting 
in realistic noise levels comparable to empirical 
recordings. ERPs were extracted by creating epochs 
around each stimulus event (from -200 ms to 1000 ms), 
applying baseline correction using the pre stimulus 
interval (-200 to 0 ms), and averaging all 60 trials. 

Parameter Inference Models: We implemented 
four distinct approaches for inferring the JR-NMM 
parameters from EEG data, as summarized in Fig. 1. 
We developed the EEGTransformer model based on 
Transformer’s Encoder components only, which 
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processes EEG signals through an attention-based 
architecture with eight attention heads, an embedding 
dimension of 256, and a multi-layer feed-forward 
network (1024→256) with a dropout regularization 
(0.2). The Vanilla LSTM model treats EEG data as 
sequential information using a 2-layer network with  
64 hidden units and dropout regularization (0.2). The 
CNN-BiLSTM integrates a CNN for feature extraction 
with bidirectional LSTMs for temporal dependency 
analysis. It employs a hierarchical 1D CNN structure 
(filters: 32→64→128, kernels: 7→5→3) with max 
pooling, followed by bidirectional and unidirectional 
LSTM layers (128 units each), multiple dropout layers 
(0.3), and dense layers (128→64) culminating in a 
linear output layer. This architecture was designed to 
capture both spatial patterns across channels and 
complex temporal dynamics in ERP signals. All neural 
network models were trained for 50 epochs with batch 
size 32. The SBI approach uses a BoxUniform prior 
and sequential neural posterior estimation. To train, we 
generated a dataset of 1000 simulations per noise level. 
All four methods were used to estimate the same  
9 JR-NMM parameters (Ae, Ai, be, bi, a1-a4, C). 

 

 
 

Fig. 1. Flow diagram for the inference of Ae, Ai, be, bi,  
a1-a4, and C using the EEGTransformer, LSTM,  
CNN-BiLSTM, and SBI methods. The JR model generates 
simulated EEG for training and testing. 

 
Data Processing Pipeline: We adopted a 

supervised regression approach for parameter 
inference, following standard deep learning practices 
[3]. Table 2 outlines our processing pipeline, designed 
to optimize neural network training for  
high-dimensional EEG data. 

Implementation Details: Models were 
implemented in Python 3.12 with PyTorch 1.9.  
Jansen-Rit neural simulations were mapped to scalp 
EEG through an EEG forward model implemented 
using MNE-Python 1.9.0. Additional libraries included 
xarray for data storage, tqdm for progress tracking, 

seaborn for visualization, and scikit-learn for 
preprocessing and evaluation. 

 
Table 2. Data processing steps. 

 
Stage Details 

Database 1000 simulations, 64-channel EEG 

Creation 60 trials per simulation 

Normalization 
JR-NMM parameters normalized to 

[0,1] 

Data Split 
80 % training, 10 % validation, 10 % 

testing (random state = 68) 
Evaluation Pearson correlation 

 
 

Sensitivity Analysis: We conducted a sensitivity 
analysis to quantify how variations in Jansen-Rit 
parameters affect simulated EEG. For each parameter 
(Ae, Ai, be, bi, a1-a4, C ), we performed 200 simulations 
while varying the target parameter from the range 
mentioned in Table 1, keeping all other parameters 
fixed. We generated ERPs for each parameter 
configuration without noise. This approach allowed us 
to isolate each parameter's unique influence on EEG 
output. For quantitative assessment, we quantified 
parameter sensitivity through three metrics: 

• Raw evoked potentials: ∆ERP(pi,t), where pi is 
the parameter, t is time; 

• Deviations from mean: ΔERP(, (ݐ =ERP(, (ݐ − ଵே ∑ ERP൫p୨, t൯ே	ୀ	ଵ , with N = 200 

parameter values; 
• Gradient with respect to parameter: ∇୮ERP(p୧, t) = பERP(୮,୲)ப୮ ቚ୮	ୀ	୮. 
These metrics were visualized as heatmaps 

showing their variation depending on parameter values 
and time. 
 
 
4. Results 
 
4.1. Results of Sensitivity Analysis 
 

Sensitivity analysis revealed marked differences in 
parameter influence on simulated ERPs (Fig. 2 and 
Fig. 3). These sensitivity heatmaps highlight how each 
parameter shapes the temporal profile of the ERP. The 
raw ERP demonstrated that excitatory parameters (Ae, 
a1, a2) primarily increased the peak amplitude around 
250ms, while inhibitory parameters (Ai, a3, a4) have an 
opposite effect. The error (deviation from the mean 
response) exhibited clear parameter-specific temporal 
windows of influence: Ae and Ai showed unimodal 
patterns whereas be and bi showed an alternance of 
positive and negative peaks. The gradient further 
quantified sensitivity magnitude, revealing that Ai had 
a more significant influence (about an order of 
magnitude) than Ae on ERP morphology, despite both 
being gain parameters. Key takeaways include:  
(1) connectivity parameters exhibit functional 
differentiation, with a1, a2 and a3, a4 showing opposite 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

96 

gradient polarities; (2) the global coupling parameter C 
affects multiple aspects of ERP morphology with 
complex biphasic patterns; and (3) excitatory time 
constant be demonstrated distributed temporal effects 

(i.e., longer tail), indicating its crucial role in overall 
signal timing. These findings provide essential insights 
for parameter estimation and model interpretation in 
neurophysiological studies. 

 
 

 
 

Fig. 2. Sensitivity analysis for synaptic parameters (Ae, Ai, be, bi) showing the ERP amplitude (left), error (middle),  
and gradient (right). 

 
 

 
 

Fig. 3. Sensitivity analysis for local connectivity (a1-a4) and C showing the ERP amplitude (left), error (middle),  
and gradient (right). 
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4.2. Parameter Inference Performance 
 

The parameter inference capabilities of our four 
models - EEGTransformer, CNN-BiLSTM, Vanilla 
LSTM, and SBI - were evaluated across varying noise 
conditions (Fig. 4). Results show distinct patterns of 
parameter recoverability across the different 
architectures. The inhibitory parameter bi 

demonstrated the strongest recovery performance 
across multiple models. The EEGTransformer and 
CNN-BiLSTM maintained exceptionally high 
correlation coefficients (>0.9) for this parameter even 
at high noise levels, with SBI showing similarly strong 
performance. In contrast, the Vanilla LSTM performed 
poorly on this parameter, with correlations fluctuating 
around 0.1-0.2, suggesting fundamental limitations in 
capturing temporal dependencies (i.e., adding a 1D 
CNN to meaningful temporal features allowed the 
CNN-BiLSTM to perform much better than the vanilla 
LSTM). The excitatory parameter be showed moderate 
recoverability, with the EEGTransformer achieving 
consistent correlations of approximately 0.5 across all 
noise conditions. The CNN-BiLSTM and SBI showed 
more variable performance for this parameter, with 
correlations typically in the 0.1-0.3 range, while 
Vanilla LSTM exhibited inconsistent correlations 
between 0.1-0.5. The connectivity parameters (a1-a4) 
exhibited poor recoverability across all models, with 
correlations rarely exceeding 0.2 and often oscillating 
around zero. Parameter C showed better recoverability 
with the EEGTransformer than other models, 
maintaining positive correlations around 0.2 across 
noise levels. The EEGTransformer and CNN-BiLSTM 
demonstrated superior robustness to noise compared to 
both the Vanilla LSTM and SBI approaches. 
 

 
 

Fig. 4. Comparison of deep learning models estimating  
JR-NMM parameters across noise levels. EEGTransformer 
and CNN-BiLSTM maintaining high correlations for bi.  
The vanilla LSTM underperforms with lower correlations, 
while SBI exhibits parameter dependent variability. 

5. Discussion 
 

Our comprehensive benchmarking study offers 
several key insights into the challenging problem of 
NMMs parameter inference from EEG data. NMM 
parameter estimation allows us to study the underlying 
neurophysiological mechanisms generating EEG. By 
estimating JR-NMM parameters from EEG, we 
directly map measurable brain signals and the 
biophysical properties of neural populations, enabling 
a mechanistic understanding of cortical dynamics and 
the potential identification of aberrant parameter 
configurations in pathological conditions. The 
sensitivity analysis revealed a clear hierarchy of 
parameter identifiability within the JR-NMM, with 
synaptic gains and time constants exhibiting stronger 
ERP signatures than connectivity parameters. This 
finding aligns with the fundamental architecture of the 
JR-NMM, where synaptic parameters directly 
modulate signal amplification and decay, creating 
more distinctive output patterns. The sensitivity 
analysis also clarifies why some parameters show poor 
identifiably. For example, Ai and Ae have almost 
identical patterns, only with inverse amplitude. 
Therefore, it is difficult to determine whether a 
reduction in ERP amplitude is caused by a decrease in 
Ae or an increase in Ai. Consequently, in terms of 
identifiability, the JR model may provide better results 
for inverse modeling if we reparametrize it as a 
function of the excitatory-inhibitory ratio ݎ =  ܣ/ܣ
and a global offset parameter α 	 = ܣ) 	 +  )/2 suchܣ
that ܣ = 2αݎ/(1 + ܣ ) andݎ = 2α/(1 +  .(ݎ
Moreover, such a parameterization would map well 
with the report of an imbalance in the 
excitatory/inhibitory ratio in various conditions, 
including autism spectrum disorder [23]. 

The comparative analysis of inference approaches 
demonstrated that Transformer-based architectures 
achieve superior robustness to noise compared to both 
the LSTM and SBI approaches. This advantage likely 
stems from the Transformer's self-attention 
mechanism, which can capture non-sequential 
dependencies across the entire ERP signal, unlike the 
strictly sequential processing of LSTMs. The 
consistent performance of the EEGTransformer, 
particularly for ܣܽ݊݀	ܾ parameters, suggests that 
attention-based architectures may be better suited for 
extracting relevant features from complex temporal 
signals like EEG. 

The parameter recovery performance broadly 
corresponds with our sensitivity analysis findings, with 
parameters showing minimal impact on ERP 
morphology (a1-a4) being poorly recovered by all 
models, regardless of noise level. This observation 
confirms the fundamental challenge of parameter 
identifiability in complex dynamical systems. If 
parameters do not create distinct signatures in the 
observable output, no inference method can reliably 
recover them without additional constraints or 
information. The SBI approach performed well for 
some parameters but is highly sensitive to noise for 
others, suggesting that SBI may be valuable in  
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low-noise conditions or combined with other 
ensemble-method approaches. The LSTM model's 
inconsistent performance across noise levels indicates 
potential limitations in applying recurrent architectures 
to this problem without additional regularization or 
architectural modifications. 

We must acknowledge several limitations to this 
study. First, it used simulated data that incorporated 
realistic noise but could not capture the full complexity 
of real EEG recordings. Furthermore, we simulated 
neural activity using a JR-NMM in a single cortical 
region, while brain activity typically involves 
distributed networks of interacting regions. The 
parameter identifiability patterns observed may differ 
in multi-region models or when using alternative 
neural mass formulations with different state variables 
and connectivity architectures. 
 
 
6. Conclusion 
 

This study demonstrates that Transformer-based 
and CNN-BiLSTM architectures outperform LSTM 
and SBI approaches for JR-NMM parameter inference, 
with synaptic parameters showing higher 
recoverability than connectivity parameters. Our 
sensitivity analysis establishes a clear relationship 
between parameter influence on ERP morphology and 
inference reliability, providing a foundation for more 
robust approaches for NMMs parameter estimation. 
These insights have important implications for 
computational neuroscience and clinical applications. 
Future work should extend this analysis to empirical 
EEG data, explore transfer learning approaches to 
bridge synthetic and real data domains, and investigate 
the potential of hybrid architectures that combine the 
strengths of different inference approaches. Expanding 
this benchmarking to other neural mass models and 
exploring multi-modal data integration could enhance 
parameter identifiability. Further, reparametrizing 
existing NMM may offer equivalent but more 
identifiable models. Robust parameter inference 
methods will ultimately enable more reliable neural 
dynamics characterization in healthy and pathological 
states, advancing our understanding of brain function 
and dysfunction. 
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Summary: Description and prediction of epileptic seizures present numerous challenges that can be addressed with physics 
and computer science. Here, we investigate epilepsy by developing a specific form of the Krankheit-operator (K-operator), a 
physics-based approach modeling disease-driven damage on brain pathways. The K-operator acts on the different layers of the 
brain, from neurons, to neural agglomerates, to lobes. Its first experimental applications to functional magnetic resonance 
images dealt with interactions between regions of interest of the brain. Here, we consider the action of K between different 
brain areas described by channels in electrocorticography (ECoG) for the first time. In particular, we focus on temporal lobe 
epilepsy, applying the methodology to a case study, i.e., the data acquired on a person monitored via pre-surgery ECoG. The 
information before, immediately before, during, and after an epileptic seizure is encoded in matrices, and investigated with the 
tools of operatorial algebra adopted in physics, shaping a form of the K-operator for our case study. We discuss our preliminary 
results and sketch further lines of development. 
 
Keywords: Electrocorticography (ECoG), Epilepsy, Krankheit-operator (K-operator), Disease evolution, Seizure detection 
 

 
1. Introduction 
 

Taken by surprise, maybe by a demon, an external 
entity: this is why ancient Greeks used the verb 
ἐπιλαμβάνω, take hold of, or attack, while referring to 
seizures [1]. And this is the origin of the word 
epilepsy2. Epileptic seizures, which are disabling and 
potentially life-threatening for the risk of  
self-suffocation, are the object of studies between 
neurology, computation, and mathematical modeling 
[2-7]. Epilepsy is related to the brain’s electrical 
activity and can be measured by 
electroencephalograms (EEGs) [8]. Pre-surgical 
interventions usually rely on intracranial EEGs 
(iEEGs) and thus require surgeons to place electrodes 
directly in the brain. This allows a finer monitoring of 
brain activities at the cost of being invasive. 
Concerning iEEG, research on epileptic seizure 
prediction has recently been categorized into four main 
categories [9]. The first category is related to 
approaches performing time-domain analysis, which is 
a linear methodology for directly extracting 
meaningful information from EEG signals within the 
temporal domain. This approach is intuitive, has a clear 

                                                           
 
2 The verb epilambàno, infinite epilambànein, with the 
preposition epì, was also used to indicate the motion of fruits 
falling from a tree, without any “will.” Similarly, the 
epileptic crisis is something attacking, involving the patient 

physical interpretation, and is easy to comprehend  
[10, 11]. The second type of approach concerns the 
frequency-domain analysis, which facilitates the 
examination of the neural signal spectral distribution 
patterns and the differences among frequency 
components [12]. The third one concerns the  
time-frequency analysis, integrating both temporal and 
spectral components. This kind of approach effectively 
captures the transient information inherent in EEG 
signals by extracting multi-component features that 
exhibit time-frequency variations [13, 14]. Finally, 
most recent approaches rely on brain networks. It is 
worth noting that the brain can be conceptualized as a 
sophisticated network in which various regions engage 
in communication and collaboration to execute diverse 
functions. It has been demonstrated that abnormal 
dynamic alterations in brain functional connectivity 
manifest in certain patients during seizure episodes. 
Furthermore, notable variations in brain functional 
connectivity patterns are evident across distinct seizure 
stages. Brain network analysis serves as a more 
effective method for elucidating the global 
characteristics of neural activity in epilepsy, 
particularly in relation to seizure onset, by examining 

in a series of fast and completely involuntary movements. 
The root λαψ then became ληψ, leps, leading to the English 
word epilepsy. 
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the degree of synchronization among various brain 
regions [15, 16]. The approach we propose in this 
paper aligns with the latter category. 

Among the different invasive technologies, one of 
the most diffused is electrocorticography (ECoG), 
which is often used to identify the precise source of 
seizures before proceeding with surgical resections of 
specific connections [17]. The analysis of ECoG helps 
improve predictive methodologies holding the 
potential to mitigate the adverse effects of inherent 
uncertainties of seizures’ occurrences. From single 
patients to cohort investigations, the prediction of 
epileptic seizures constitutes a considerable challenge 
within the domain of neurology. Consequently, there is 
a growing emphasis among researchers on the 
advancement of data-driven computational models 
aimed at improving predictive accuracy within  
this field. 

To foster new predictive techniques, we aim to 
approximate a time-evolution representation of 
neurological diseases from ECoG data, through a 
tailored version of the Krankheit-operator  
(K-operator) [18], previously applied to fMRI-derived 
data of Parkinson’s Disease [19] and Alzheimer-
Perusini’s Disease patients [20]. K acts on brain areas 
and functional connections to reproduce the effects of 
a neurological disease. The K-operator draws its 
conceptual foundation from historical accounts of 
external influences on neuropsychiatric phenomena 
[18], and the need for a unified view of several diseases 
through the analysis of brain-connectome alterations 
[21]. The pathways of anatomic, functional, and 
effective connectivity can indeed be altered by the 
presence of various diseases. 

Here, we focus on a single epileptic subject, using 
K to capture information on temporal alterations in 
epilepsy. 

This study seeks to expand the conceptual 
framework of the K-operator via a preliminary 
investigation of its dynamics, integrating empirical 
data from ECoG signals to model the temporal aspects 
of the disease. 

The transition from the fMRI-based K-operator to 
the ECoG-based one is not trivial and specifically aims 
to investigate the correlation between the activity in 
different brain areas. Thus, our study constitutes a 
bridge between time-domain analysis and the 
correlation between the activity of different brain 
areas, in preparation for more comprehensive research 
relating activity within each area with the overall brain 
connectome. 
 
 
2. Methods 
 
2.1. Definition of the K-operator 
 

The K-operator is conceptualized as an operator 
provoking alteration on a physical observable, thus it 
inherits the matrix and operatorial formalism from 
theoretical physics. Denoting by G the matrix of 

weights of functional connections in a healthy brain, 
and Gk in a diseased brain, we define K as KG=Gk, i.e., 
K is a mathematical object that turns a healthy brain 
into a diseased one. Describing the time evolution of a 
diseased patient, K acts as K(t)Gk(t)=Gk(t+1), 
describing the time evolution of the disease in a brain. 
Having the information on the brain matrices, we 
approximate K as K(t)=Gk(t+1)Gk(t)−1. This equation 
is exactly solved via a proper matrix product. 
However, here we use a purely element-wise 
Hadamard product, limiting the idea of the matrix 
inversion to single elements (no entries are exactly 
zero). K is retrieved dividing each element of Gk(t + 1) 
by each element of Gk(t): 

 

, (1) 

 
where ∗ denotes the element-wise product, {k(t)}ij is 
the (ij)-th element of the K-operator, and {gk

ij(t+1)}, 
{gk

ij(t)} are the corresponding elements of matrices 
Gk(t+1) and Gk(t), respectively. As the brain matrices, 
we use the correlation matrices obtained from ECoG 
data. For the sake of simplicity, a linear definition is 
adopted. If we consider K as an element-wise 
multiplicative operator, then it can be considered as 
linear. However, the K defined with the inverse matrix 
is in general nonlinear; also, if we define K(t) as a 
differential operator, according to the specific disease, 
nonlinearity could be introduced. Thus, it is safer to not 
impose linearity upon the definition of K. In addition, 
as theoretically described in [18], K can act on different 
levels, including neuronal firing rate, interaction 
between neuronal populations, and interaction 
between lobes. Thus, K acts on the different layers of 
the brain network. In its current data applications, the 
high-level connectome approach has been privileged 
[19, 20], and the results obtained through K are 
confirmed by medical literature findings. Here, we 
start from regions of interest caught in fMRI to the 
inter-channel variation of neural activity, exploiting 
real data from an ECoG measurement to shape the 
form of the operator. Formally, in the case of fMRI, 
the matrix elements of Gk are computed as the 
correlation between the time series of pairs of regions 
of interest. Similarly, in the case of ECoG, the matrix 
elements of Gk are the correlation values between the 
signals (time series) of each pair of channels. The final 
correlation number between each pair of channels is 
computed by averaging the correlation values obtained 
in a specific time frame. We consider all channels for 
the computation of Gk. In Section 3, we show and 
discuss a submatrix of Gk corresponding to a selection 
of pairs of channels. 
 
 
2.2. Algorithm 
 

The proposed algorithm inputs consist of  
time-series data obtained from selected ECoG 
electrodes (or channels) and the specified number of 
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intervals (Fig. 1). First, we segment the ECoG channel 
data into n intervals (in our case, n=4). The correlation 
matrix between the channels is computed for each 
interval w (with w=1,..., n), denoted as Gw. Hence, the 
K-operator for each pair of consecutive time intervals 
w and w + 1 is represented as K(w,w+1). Then, K(t) is 
approximated via regression from the preceding 
elements. 

 
 

2.3. Case Study 
 

We consider as a case study the ECoG data 
collected on patient 02 of the Fragility Multi-Center 
Retrospective Study3. The patient is a woman of  
28 y.o. with a hypothesized left anterior temporal lobe 
epilepsy. The ECoG electrodes of the resection surgery 
site are PST1-4, AST1-2, and MST1-2. Electrodes 
ALEX1-8, LAEX3, RQ1-2, G5-6, G17, and G25 are 
excluded from the analysis being bad channels, 
according to the annotations provided by the dataset 
expert. The first pre-surgery recording (Fig. 2) lasts 
313.11s with a sampling rate of 1000 Hz. According to 
the annotations, an early onset of a seizure starts at the 
second 105.90, mainly seen on TT1 and then on the 
PST channels. The delta rhythm slows on G1-3 
(109.78s), and a spread on the TT, AST, MST, and PST 
electrodes starts at 154.97s while a general spread 
starts at 164.85s. The epilepsy seizure offset is marked 
at 204.74s. 

We focused on a single patient to test our 
methodology in the case of ECoG signals, before 
extending the analysis to multiple patients. 
 

 
 

Fig. 1. Algorithm. 
 
 
3. Results and Discussions 
 

Each ECoG signal (from the 76 electrodes) is 
divided into four intervals of 78.28 seconds each, 

                                                           
 
3 https://openneuro.org/datasets/ds003029/versions/1.0.6 

comprising different brain activations (Fig. 2) and 
compliant with the explanation given by the expert 
labeler of the data. The first window shows a  
normal-steady neural activity. The second one includes 
the early onset of the epileptic seizure. The third one 
encases the whole spread of the seizure and its offset. 
The fourth window presents the post-seizure neural 
activity. We compute the correlation matrices (our 
Gks) between channels on each interval. Then, by 
looking at the K12 computed from Gk(1), corresponding 
to the first interval, and Gk(2), corresponding to the 
second interval (Fig. 3a), we notice that the pairs of 
channels TT2 – PST1 and TT2 – PST3 do not show a 
great correlation variation from the first to the second 
time interval. However, from K23 (Fig. 3b), we notice 
an increase in correlation variational trend for TT2 – 
TT1, TT2 – MST1, TT2 – PST1, TT2 – PST3. Finally, 
K34 (Fig. 3c) presents a more evident variation of TT2 
– PST2, MST4 – PST3, PST4– MST2, PST4 – TT1, 
PST4 – PST1. This shows a correspondence between 
the time variations of the raw signals and the variations 
detected by the K-operator. Focusing on TT2, we 
notice an increase in signal variations with respect to 
the other channels. This may be due to the initial wide 
oscillation around the second 50. A similar seizure 
spreading is described in the literature [22], and 
temporal lobe epilepsy can have serious consequences, 
also involving language-network connectivity [23]. 
 
 
4. Conclusions 
 

Our approach allows us to estimate the value of 
K(t) for every t. However, we stress that K(t) is 
computed via a regression from three instances of K 
from four intervals. Thus, part of the information is 
lost. As currently defined, the K-operator is more 
suitable for the interactions between brain areas rather 
than what happens inside a specific area. 

Indeed, as currently defined for data applications, 
the K-operator is more suitable to describe the 
interactions between brain areas rather than what 
happens inside a specific area. In its present form, K(t) 
captures the “relative relationships” between channels, 
catching the electric activity between brain areas rather 
than the alteration of the activity in an area itself, 
which can characterize a seizure. Nevertheless, a 
seizure is also characterized by the synchronization 
between neuronal agglomerates in the same area or 
between different brain areas, thus, it is not only a 
“local” property. Considering the idea of writing K as 
the tensor product of its submatrices, we can think of a 
part of the operator that modifies the “inner behavior” 
of a certain area and multiplies as a tensor a group of 
brain areas. Alternatively, there could be a multi-layer 
K, with “inner layers.” In this case, we could describe 
the layer of single channels as another layer. 

In addition, a more refined approach would involve 
the computation of Gk for smaller windows and the 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

103 

regression to estimate K(t) directly from them, losing 
the minimal amount of information. 

To take into account non-linearity, we also 
computed the approximation of K(t) via a quadratic 

regression. We present two instances of K(t) as a 
methodological example at t=170s (Fig. 4a) and at  
t=230s (Fig. 4b). 

 
 

 
 

Fig. 2. ECoG signal. 
 
 

 
 

Fig. 3. Ks between the four intervals, K12, K23, K34.. 

 
 

Fig. 4. K(t) at specific times. 
 

Here, our comments focused on trends, noticing the 
similarity with seizure spread as described in the 
literature. However, a more comprehensive discussion 
would require the comparison between  
different patients. 

That said, observing the obtained values of 
elements of K, we caught some hints on the possible 
spreading of the seizure from the hippocampus through 
the temporal gyrus and ending within the superior 
temporal gyrus, as confirmed by the literature [22]. 

Possible further developments may involve the 
combination of the K-operator for the inter-channel 
correlation with a detailed study of intra-channel 
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information, via recurrence plots. This would help 
connect our research to the recurrence analysis of  
pre-ictal and inter-ictal periods from epileptic EEG 
data, and their measures of complexity [24]. 

Our final aim is tuning a prediction system, 
considering patients’ variability, sex, and age, 
predicting onset and evolution of seizures and key 
features of seizure propagation. 

Code. https://github.com/medusamedusa/K-
operator_epilepsy 
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Summary: Next-generation wireless systems rely on millimeter-wave (mmWave) frequencies for high bandwidth, but their 
propagation is challenged by path loss and environmental blockages, affecting reliability. Beam management, particularly 
beam steering, is essential to maintaining robust communication in dynamic environments. Traditional methods estimate the 
current Angle of Arrival (AoA), which struggle with high user mobility scenarios, leading to increased connection outages. In 
contrast, predicting the future AoA enables proactive beam adjustments, reducing delays and improving link stability. This 
work focuses on AoA prediction at the UE side with limited resources, ensuring real-time operation. We propose a  
low-complexity LSTM-based model that predicts future AoA using prior ones and channel observations, requiring only the 
beamformer’s output signal. Experimental results demonstrate that our ML-based solution significantly reduces outage 
probability compared to the EKF, particularly in low-SNR conditions, highlighting its effectiveness in dynamic mmWave 
environments. 
 
Keywords: Angle of arrival (AoA), Extended Kalman filter (EKF), Long short-term memory (LSTM), Machine learning, 
Millimeter-wave (mmWave). 
 

 
1. Introduction 
 

Next-generation wireless systems rely on 
millimeter-wave (mmWave) frequencies for high 
bandwidth, however, propagation challenges such as 
severe path loss and environmental blockages can 
compromise reliability. Effective beam management 
including beam search for link establishment or 
recovery and beam steering for dynamic adjustments is 
therefore essential in these dynamic environments. 

Accurate and timely prediction of the Angle of 
Arrival (AoA) is crucial for efficient beam steering. 
Traditional methods depend on beam sweeping to 
estimate the AoA, a process that demands extensive 
pilot signals and significant radio resources. This 
increases latency due to the time required for 
measurement and data processing, thereby elevating 
the risk of connection outages. In contrast, tracking 
techniques that operate solely on the received signal 
avoid additional radio resource consumption. 

Our solution addresses these challenges by 
employing a machine learning (ML) approach that 
leverages a Long Short-Term Memory (LSTM) 
network for beam tracking at the user equipment (UE) 
side, where resources, energy, and real-time 
processing capabilities are limited. This method 
predicts the AoA for the next time step by analyzing 
prior AoA values and channel observations, enabling 
the UE to anticipate changes in beam direction and 
ensuring seamless alignment and reduced latency. 

The remainder of this paper is organized as 
follows: Section 2 reviews related works. Section 3 
introduces the system model, formulates the problem, 
and describes the data generation process; Section 4 
presents the EKF- and ML-based solutions; Section 5 
provides a performance analysis and comparison of the 
proposed solutions; and Section 6 concludes the paper. 

2. Related Works 
 
Recent studies have explored various approaches 

for beam tracking. Several works have employed 
Extended Kalman Filter (EKF) techniques to address 
challenges such as beam tracking under line-of-sight 
(LOS) conditions [1] and handling multipath channels 
dominated by a single LOS path [2]. EKF methods 
have also been applied in V2X systems for intersection 
management [3] and precise tracking of vehicle 
position and motion [4]. Moreover, adaptive EKF 
approaches have been developed to balance accuracy 
and overhead in multipath environments [5]. However, 
the EKF solution’s limited generalization capacity 
under dynamic conditions and its reliance on numerous 
parameters impose additional constraints that 
complicate practical implementation. Consequently, in 
our study, the EKF is used primarily as a benchmark. 

In parallel, various ML approaches have been 
investigated for beam prediction in mmWave systems 
[6]. Some studies have compared algorithms such as 
KNN, SVM, decision trees, and naïve Bayes for beam 
prediction accuracy [7]. Other research has explored 
encoder-decoder architectures using visual sensing 
data for future beam prediction in V2X 
communications [8], while low-complexity ML 
designs exploiting RSRP have also been introduced 
[9]. Notably, LSTM-based models have gained 
significant traction, with applications in predicting 
channel behavior [10], tracking AoA using prior 
channel observations [11], and determining optimal 
serving beams from beam index sequences [12]. 
Although these ML approaches effectively capture 
temporal dependencies, most focus on estimating the 
current AoA or require high-complexity models. 

Building on these insights, our proposed ML-based 
solution leverages an LSTM network within a  
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low-complexity model to predict the AoA for the next 
time step. This proactive strategy enables the user 
equipment (UE) to anticipate changes in beam 
direction, ensuring seamless beam alignment and 
improved reliability in high-mobility scenarios. 

The contributions of this paper are twofold: 
● First, it presents a low-complexity LSTM-based 

model that predicts AoA in mmWave systems using 
only the observed signal from the beamformer output. 
This approach optimizes the balance between 
computational efficiency and prediction accuracy for 
real-time beam steering. 

● Second, the proposed model demonstrates robust 
adaptability by generalizing across various antenna 
configurations and user mobility conditions. Even 
when trained on a single speed or specific antenna 
setup, it maintains high performance without the need 
for retraining, offering a scalable solution that 
performs well in diverse and dynamic scenarios. 
 
 
3. System Model and Data Generation 
 

In this section, we present the system model for 
beam direction prediction. We consider a scenario 
where an omni-directional BS communicates with UEs 
equipped with a uniform linear array (ULA) of N 
antenna elements. Equation (1) defines the steering 
vector characterizing the ULA's response [1, 2, 9, 10]. 
 

(ߠ)ࢇ  = ൣ1, ݁ௗ௦(ఏ), … , ݁ௗ(ேିଵ)௦(ఏ)൧், (1) 
 
where ݇ =  is the propagation signal ߣ ,ߣ/ߨ2
wavelength, ݀  is the distance between adjacent antenna 
elements, ߠ is the true AoA, and ܰ is the antenna 
number at the UE. The channel observation at a given 
time ݐ is described by: 
[ݐ]ݕ  = ܰ[ݐ]ߙ ([ݐ]ߠ)ࢇ	൯[ݐ]ߠு൫࢝	 +  (2) [ݐ]݊

 
A single dominant multipath component is 

assumed to be tracked and predicted, as secondary 
paths lie outside the main beam steered by the antenna 
array. Here, [ݐ]ߙ denotes the complex gain of the 
dominant path, ([ݐ]ߠ)ࢇ represents the steering vector, 
and ࢝൫ߠ[ݐ]൯ is the beamforming weighting vector 
based on the predicted angle. The notation (. )ு 
denotes the Hermitian operator (complex conjugate 
transpose), ݊[ݐ] represents additive noise and 
interference, finally [ݐ]ߠ and ߠ[ݐ] denote the true and 
predicted AoA respectively. 

In addition to this observation model, we assume 
that an initial connection between the BS and UE has 
been established, with the main challenge being to 
maintain the connection via beam tracking. At ݐ = 0, 
the model requires prior AoA values to ensure 
sufficient historical data for predictions. Although 
simplified for clarity, our models can be extended to 
scenarios where the BS uses an antenna array. 

The evolution processes for both the real and 
imaginary part of the path gain are assumed to follow 
the first-order Gauss-Markov model given by [1, 2]: 
 

ݐ]ߙ  + 1] = [ݐ]ߙߩ + ζ[ݐ], (3) 
 
where ߩ is the correlation coefficient and ζ[ݐ] is a 
random variable with a normal distribution ζ[ݐ]	~ࣨ(0, (1 −  .(ଶ)/2ߩ

To generate data for this study, we simulated a 
mmWave communication scenario in which a BS is 
positioned at the center of a cell. User movement is 
modeled with varying speed and orientation based on 
predefined laws to ensure realistic mobility. These 
characteristics, especially speed and direction, 
significantly affect beam prediction performance. Our 
models incorporate gradual changes in these variables, 
with current values influenced by past states to ensure 
a smooth and realistic evolution. The simulation 
parameters are summarized in Table 1. 
 
 

Table 1. Simulation Parameters. 
 

Parameter Value 

Cell Radius 60 meters 
Carrier Frequency 28 GHz 
BS Antenna Omnidirectional 
UE Antenna ULA / N ∈{4, 8, 12, …, 64} 
Prediction period 0.1 seconds ߙ Model First-Order Gauss-Markov 
Users speed speed ∈ [1, 33] m/s 
Users orientation Varying orientation 

 
 
4. Proposed Solutions 
 

In this section, we present two approaches for 
predicting the AoA at the next time step. First, we 
introduce an EKF-based solution as a benchmark for 
its effectiveness in addressing nonlinear estimation 
problems. Next, we detail our ML-based approach, 
which leverages an LSTM network. 
 
 
4.1. EKF Solution 
 

The EKF-based solution offers low computational 
complexity and reliable performance suitable for  
real-time beam prediction. However, its reliance on 
numerous parameters complicates the practical 
implementation and limits adaptability under dynamic 
conditions. The state evolution model is defined using 
a state vector comprising the real and imaginary parts 
of the path gain and the AoA based on the variables 
proposed in [2]. This state vector is given in (4), and 
the AoA evolution, represented by a Gaussian process 
noise model, is expressed in (5) [5]. 
 

[ݐ]࢞  = ൣℜ([ݐ]ߙ), ℑ([ݐ]ߙ),  ൧், (4)[ݐ]ߠ
ݐ]ߠ  + 1] = [ݐ]ߠ + ζఏ[ݐ], (5) 
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where ζఏ[ݐ] is a random variable distributed according 
to ζఏ[ݐ]~ࣨ(0,  ఏଶ is the angle variance in oneߪ ఏଶ) andߪ
time slot. The state evolution model, according to the 
discrete-time stochastic evolution model, is expressed 
as follows [1, 2]: 
ݐ]࢞  + 1] = [ݐ]࢞ࡲ + [ݐ]࢛ +  (6) [ݐ]࢝
 

From (3) and (5), the state transition matrix ࡲ is 
given by ࡲ = ,ߩ])݃ܽ݅݀ ,ߩ 1]) where ݀݅ܽ݃(ࢇ) denotes 
the diagonal matrix with diagonal elements from the 
vector ࢇ. The control input [ݐ]࢛ represents an external 
influence on the state evolution and it’s defined as [ݐ]࢛ = [ݐ]࢞ − ݐ]࢞ − 1], this formulation models the 
state variation, assuming that for small time steps, the 
variation remains approximately constant. The process 
noise [ݐ]࢝ models uncertainties in the state evolution, 
and defined as [ݐ]࢝	(ࢃ,0)ࣨ~ where ࢃ is the process 
noise covariance matrix, given by ࢃ = [(1 − ,ଶ)/2ߩ (1 − ,ଶ)/2ߩ  .[ఏଶߪ

The objective of the EKF is to recursively update 
the previous state prediction [ݐ]࢞ using the observed 
signal [ݐ]ݕ, as defined in (2), and the measurement 
model ݄([ݐ]࢞). Here, ݄([ݐ]࢞) represents the 
observation function, which depends on three variables 
extracted from [ݐ]࢞ and it is defined as [ݐ]ݕ in (2), but 
without the noise component ݊  ,Subsequently .[2 ,1] [ݐ]
the EKF predicts the channel parameters ݐ]࢞ + 1] for 
the next time step. The EKF algorithm for one time 
step is presented as follows [1]: 
 
Initialization: ࢞[ݐ − 1], ݐ]ෙ ,[ݐ]ݕ − [ݐ]ෝ࢞ [1 = ݐ]࢞ࡲ − 1] + ݐ]࢛ − 1] [ݐ] = ݐ]ෙࡲ − ்ࡲ[1  ࢃ+
Loop (ݐ ← ݐ + 1): 

• Kalman Gain [ݐ]ࡷ = [ݐ][ݐ]்ࡴ൫[ݐ]ࡴ[ݐ][ݐ]்ࡴ +  ൯ିଵࢂ
• State Update ࢞[ݐ] = [ݐ]ෝ࢞ + [ݐ]࢟൫[ݐ]ࡷ − [ݐ]൯ ෙ([ݐ]ෝ࢞)݄ = ࡵ) −  [ݐ]([ݐ]ࡴ[ݐ]ࡷ
• State Prediction ࢞ෝ[ݐ + 1] = [ݐ]࢞ࡲ + ݐ] [ݐ]࢛ + 1] = ்ࡲ[ݐ]ෙࡲ  ࢃ+

 
The predicted channel parameters ࢞ෝ[ݐ + 1] and the 

predicted error covariance [ݐ + 1] are determined 
based on the state evolution model, the previous 
updated estimates ࢞[ݐ] and ෙ[ݐ]. Here, [ݐ]ࡷ denotes 
the Kalman gain, ࡵ is the identity matrix, and [ݐ]ࡴ is 
the Jacobian of ݄([ݐ]࢞) with respect to the state vector [2] [ݐ]࢞. To ensure that the state is represented in real 
values, the observed signal is expressed as		[ݐ]࢟ = [ℜ([ݐ]ݕ), ℑ([ݐ]ݕ)]்	 [2] and the measurement 
error covariance matrix is defined as  ࢂ = ݀݅ܽ݃([1/(ܰ. ܴܵܰ), 1/(ܰ. ܴܵܰ)]). It is 
important to note that the EKF algorithm requires 
knowledge of the SNR during testing to accurately 
generate this matrix, which introduces an additional 
constraint. 
 

4.2. ML Solution 
 

Our ML-based solution employs an LSTM network 
chosen for its ability to capture long-term 
dependencies in time-series data, allowing the model 
to leverage multiple prior states from previous AoA 
estimates and channel observations for accurate 
predictions of AoA at the next time step. Fig. 1 
illustrates our proposed approach, where the model is 
implemented as an LSTM network block comprising a 
fully connected layer with 30 units, followed by an 
LSTM layer with 50 hidden units, and a final fully 
connected layer with 30 units. No activation functions 
are applied to the output, and the layer sizes were 
determined empirically to balance model capacity and 
computational efficiency. 

The network input comprises noisy observed 
signals {ݐ]ݕ − 1], ݐ]ݕ − 2], … , ݐ]ݕ −  from the {[ܮ
beamformer output, as defined in (2), along with 
previous AoA predictions ൛ߠ[ݐ − 1], ݐ]ߠ −2], … , ݐ]ߠ −  ൟ. This setup reflects the practical[ܮ
scenario in which the UE has access only to predicted 
AoA values and measured ݕ. The sequence length ܮ 
determines the number of prior states considered. Our 
model effectively performs an inverse beamforming 
process on the observed signals to extract the AoA. By 
analyzing the sequential pattern of past AoA values, it 
learns the underlying variation patterns and temporal 
dependencies, enabling it to predict the next AoA ߠ[ݐ + 1]. To ensure efficient training, the model is 
optimized using the Adam optimizer. 
 

 
 

Fig. 1. The proposed beam prediction approach. 
 

In our model, the parameter ܮ defines the sequence 
length, representing the number of prior states 
included as input. For instance, when ܮ = 2, the input 
includes both the previous state and the one before it. 
Selecting an optimal sequence length is crucial to 
balance sufficient information for accurate predictions 
without overwhelming the network with excessive 
complexity, as we demonstrate in the results section. 

In practical scenarios, previous predictions affect 
channel observations because they determine the beam 
directions. To simulate this during training and ensure 
that our model is robust against uncertainty inherent in 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

108 

prior predictions, we define the training AoA as ߠ௧[ݐ] = [ݐ]ߠ +  is a zero-mean [ݐ]߰ where ,[11] [ݐ]߰
Gaussian noise with a standard deviation of 4°, 
reflecting typical prediction errors. The corresponding 
channel observation ݕ௧[ݐ] is then generated based on 
both the true AoA [ݐ]ߠ	and the training AoA ߠ௧[ݐ]. 
During training, the target label is the true AoA at the 
next time step ݐ]ߠ + 1], while the input features 
include the real and imaginary components of the 
previous observations ݕ௧ along with the training 
previous AoA values ߠ௧. 

During testing, an initial sequence of historical 
AoA values and channel observations (of length L) is 
assumed to be known, ensuring the model has 
sufficient data for predictions. Thereafter, the model 
sequentially predicts each new AoA using its prior 
outputs and the corresponding channel observations. 
Note that the channel observation [ݐ]ݕ depends on both 
the UE’s beam orientation decision ߠ[ݐ] and the true 
AoA [ݐ]ߠ. 
 
 
5. Results 
 

In this section, we evaluate the performance of the 
above-presented beam prediction approaches, the EKF 
and our proposed ML solution, using two key metrics: 
outage probability and Root Mean Squared Error 
(RMSE). At each time step, the model predicts the 
AoA ߠ and calculates the error with respect to the true 
AoA ߠ. If the prediction error exceeds a predefined 
threshold ∆்ߠ, the connection is considered lost, and 
an outage is recorded. For simplicity, we assume that 
the connection is reestablished instantaneously, and 
the error for that step is excluded from the RMSE 
calculation since it represents a connection failure 
rather than a prediction error. 

The outage probability quantifies the likelihood of 
a connection loss when the predicted AoA deviates 
from the true AoA by more than the threshold, and is 
defined as follows: 
 ܲ = ଵெ∑ ߠหൣܫ − หߠ > ൧ெୀଵ்ߠ∆ , (8) 

்ߠ∆  = ସగଷே, (9) 

 
where, ߠ and ߠ represent the true and predicted 
AoA at the ݉-th instance, respectively, ܯ represents 
the total number of predictions, ܫ[. ] is an indicator 
function that equals 1 if its argument is true and 0 
otherwise, and the threshold angle ∆்ߠ is determined 
as a function of the UE antennas [11]. A lower outage 
probability reflects improved link reliability, directly 
contributing to a better user experience. 

The RMSE (Root Mean Squared Error) quantifies 
the accuracy of the predicted AoA ߠ by measuring the 
average magnitude of the error between the true AoA 
and its prediction. It is calculated as: 
 

ܧܵܯܴ = ටଵ∑ ൫ߠ − ൯ଶୀଵߠ , (10) 

 
where ߠ and ߠ are the true and predicted AoA at the ݇-th instance (for non-outage cases), and ܭ is the total 
number of such non-outage instances. A lower RMSE 
indicates higher prediction accuracy. 

Fig. 2 illustrates the outage probability and RMSE 
as functions of the sequence length ܮ for different 
Signal-to-Noise Ratio (SNR) values at a mean user 
speed of 1 m/s. The results show that increasing the 
sequence length generally improves performance by 
providing the model with a richer historical context to 
capture user mobility and channel dynamics. However, 
when ܮ exceeds 4, the performance degrades, as the 
excess data overwhelms the model's capacity to 
process it effectively, leading to diminishing gains. 
 

 
 

Fig. 2. Outage probability and RMSE as a function  
of Sequence Length for ML solution. 

 
Based on these observations, we select a sequence 

length ܮ = 3 for the remainder of the results, balancing 
sufficient historical information with manageable data 
complexity and prediction accuracy. 

Fig. 3 illustrates the outage probability and RMSE 
as functions of SNR for the ML solution, with curves 
corresponding to different training SNR values. In the 
upper part, we observe that low-SNR trained models 
perform better in low SNR scenarios. This is evident 
from the lower outage probabilities achieved at poor 
SNR levels. This outcome can be attributed to the 
model's ability to generalize and adapt when trained in 
more challenging conditions, making it more robust in 
environments with high noise levels. In the lower part, 
we notice that models trained at lower SNRs exhibit 
lower accuracy in high-SNR scenarios compared to 
those trained at higher SNRs. This is likely because 
high-SNR-trained models are better optimized for  
low-noise environments, while low-SNR-trained 
models prioritize robustness over precision. 

Based on these observations, we select SNR 
training=-2 dB for the remainder of the results. This 
choice represents a trade-off, balancing the model's 
performance across both low and high SNR 
conditions. 
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Fig. 3. Outage probability and RMSE as a function of SNR 
for ML solution with different training SNR. 

 
Fig. 4 illustrates the performance comparison 

between the proposed ML solution with a sequence 
length ܮ = 3 and the EKF across varying SNR levels 
with a mean user speed of 1 m/s. 
 

 
 

Fig. 4. ML vs. EKF: Outage probability and RMSE  
as a function of SNR. 

 
In terms of outage probability, the ML solution 

consistently outperforms the EKF across all SNR 
values, demonstrating its superior ability to maintain 
reliable connections under challenging conditions. 
However, at lower SNR levels, the ML model exhibits 
a higher RMSE than the EKF because it prioritizes 
connection reliability over prediction precision. In 
contrast, the EKF maintains a lower RMSE as it does 
not account for outage instances in its error 
calculations. As SNR increases, both methods show a 
reduction in RMSE, eventually converging to similar 
values, which indicates comparable prediction 
accuracy in favorable conditions. Overall, these 
observations highlight the ML solution's superior 
capability in reducing outage probability. 

Fig. 5 illustrates the outage probability and RMSE 
as functions of the users’ mean speed at an SNR of  
0 dB. The analysis compares three approaches: the ML 
solution with ܮ = 3 trained at a speed of 10 m/s (Single 
training), the ML solution retrained for each specific 
speed with ܮ = 3 (Separate training), and the  
EKF method. 

 
 

Fig. 5. Outage probability and RMSE as a function  
of speed. 

 
Both ML approaches outperform the EKF method, 

demonstrating their effectiveness in AoA prediction. 
While the ML solution with separate training for each 
speed performs slightly better than the single training 
model, the small difference highlights the ML model’s 
ability to generalize across different mobility 
conditions. However, further performance gains can be 
achieved by tailoring the training process to specific 
scenarios, enhancing robustness against high mobility 
challenges. Regarding RMSE, all methods exhibit a 
similar trend: prediction errors increase with higher 
user speeds. This indicates that as users move faster, 
accurately predicting the Angle of Arrival (AoA) 
becomes more challenging for all approaches. 

Fig. 6 illustrates the outage probability and RMSE 
as functions of users’ antenna number at an SNR of  
0 dB. The analysis compares three approaches: the ML 
solution with ܮ = 3 trained with 16 antennas (Single 
Train), the ML solution retrained for each antenna 
configuration (Separate Train), and the EKF method. 
 

 
 

Fig. 6. Outage probability and RMSE as a function  
of the number of antennas. 

 
Both ML approaches outperform the EKF method, 

demonstrating superior AoA prediction capabilities. 
Although the ML solution with separate training for 
each antenna configuration performs slightly better 
than the single training model, the small difference 
highlights the model’s strong generalization across 
different setups. However, further performance 
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improvements can be achieved by tailoring the training 
process to specific antenna configurations. Regarding 
RMSE, all methods show a similar trend: prediction 
errors decrease as the number of antennas increases 
due to a smaller ∆்ߠ. In addition to performance 
metrics, we compare the computational complexity of 
the ML and EKF methods in terms of floating-point 
operations (FLOPs). The ML solution with ܮ = 3 
requires approximately 32,650 FLOPs per prediction 
step, significantly lower than many existing ML-based 
approaches, while the EKF requires only 774 FLOPs. 
However, due to its higher outage probability, the EKF 
method necessitates at least eight times more beam 
searches to compensate for outages, leading to 
substantial radio resource consumption. This 
highlights the efficiency of our ML solution, which, 
despite its higher computational cost, minimizes beam 
searches and offers a well-balanced trade-off between 
efficiency, reliability, and adaptability. 
 
 
6. Conclusions 
 

In this paper, we introduced a novel LSTM-based 
approach for predicting beam direction in mmWave 
systems. Our experiments demonstrate that the 
proposed ML method significantly reduces outage 
probability, especially under low SNR conditions, 
enhancing the reliability of mmWave links compared 
to the traditional EKF. We also emphasized the 
importance of selecting an optimal sequence length to 
balance sufficient information with accurate 
predictions. Furthermore, our approach shows robust 
adaptability, performing strongly even when trained on 
a single configuration, however tailoring the training 
process to specific configurations or conditions can 
further enhance robustness. Overall, our study 
highlights the potential of ML techniques, particularly 
LSTM networks, in advancing beam management and 
AoA predictions. By enhancing beam steering 
reliability, our method reduces the need for frequent 
beam searches, paving the way for more efficient and 
adaptive mmWave communication networks. 
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Summary: Myasthenia gravis (MG) belongs to the group of rare diseases. The development of a computer-based tool to 
facilitate the diagnosis of MG and collect data from clinical trials for further analysis is an important element that supports the 
development of MG treatment. This paper presents an original solution for supporting the diagnosis of a disease called 
Myasthenia Gravis (MG). Due to the slow progression of this disease, an important requirement of this system was the ability 
for the patient to self-monitor their condition at home. In particular, here we focus on an algorithm which automatically detects 
ptosis symptoms based on patient video captures with the standard camera. The predictor’s ability to identify ptosis, clinically 
referred to as drooping of the eyelid, requires a sequential image analysis methodology. Each phase within this methodology 
is tasked with different visual data processing objectives that cumulatively culminate in the determination of the presence of 
ptosis. This system offers a low-cost and accessible alternative. 
 
Keywords: Ptosis, Myasthenia gravis, Face detection, Eyelid detection. 
 

 
1. Introduction 
 

Myasthenia gravis (MG) belongs to the group of 
rare diseases. Rare diseases are most often genetically 
determined, with a chronic and often severe course, 
about half of which manifest themselves in childhood. 
Due to their rarity, difficulty in diagnosing, and lack of 
public awareness, knowledge about these diseases has 
been limited to date. The development of a computer-
based tool to facilitate the diagnosis of MG and collect 
data from clinical trials for further analysis is an 
important element that supports the development of 
MG treatment [1]. 

In this article, we present a solution that allows 
automatic detection of one of the symptoms of MG, 
namely ptosis. The presented algorithm is a component 
of the DIAG-MG system developed by our team, 
which assesses four symptoms of MG: eyelid 
drooping, double vision, dysphagia and upper limb 
muscle strength [2]. Due to the slow progression of this 
disease, an important requirement of this system was 
the ability for the patient to self-monitor their condition 
at home. Before symptom assessment, patients are 
self-assessed using the Myasthenia Gravis Activities 
of Daily Living (MG-ADL) scale, thus establishing an 
initial baseline of symptomatology. 

The topic related to an automated eyelid 
measurement was presented in some publications. 
Recently approaches using neural network technology 
have been utilized for this task. Publication [3] 
evaluates the clinical usefulness and reliability of a 
NN-based automated eyelid measurement system. 
Authors proposed an automated NN-based 
measurement system that could provide a 
straightforward and precise method for measuring 
MRD1 and MRD2, as well as detecting morphological 
abnormalities in the eyelids. Another approach using 
NN was presented in [4]. Authors trained a neural 
network for eye landmark detection consisting of a 
ResNet50 backbone. They proved the feasibility of 

automated ptosis assessment from frames of video data 
collected remotely over a broad range of smartphones. 

The solution presented in our proposal is based on 
the standard (non-NN) approach. Our system does not 
require a lot of computing power and can be run on 
devices that do not have a lot of resources. It is also 
possible to run this application on a smartphone. 
 
 
2. DIAG-MED System 

 
Elaborated by our team DIAG-MG system is a 

software, facilitates the assessment of symptom 
manifestation in individuals diagnosed with 
Myasthenia Gravis (MG) and quantifies the severity of 
these symptoms (severe, moderate, mild, or absence of 
symptom) in alignment with the criteria set forth by the 
Quantitative Myasthenia Gravis Test. 

The DIAG-MG program is designed to evaluate 
four specific symptoms: ptosis, diplopia, dysphagia, 
and the muscular strength of the upper limbs. Prior to 
the symptomatic evaluation, patients will undergo a 
self-assessment utilizing the Myasthenia Gravis 
Activities of Daily Living (MG-ADL) scale, thereby 
establishing a preliminary baseline of 
symptomatology. 
 
 
3. Ptosis Detection Algorithm 

 
The prediction analysis component of DIAG-MG 

(predictor) is a sophisticated application element that 
uses various algorithms and image processing 
techniques to analyze visual data collected during 
diagnostic assessments. Its main task is to 
autonomously assess patient video recordings in order 
to identify and quantify specific neurologically 
relevant symptoms. After completion of the recording 
phase of the assessment, all video data is transmitted 
to the prediction software for processing. 
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The performance of the Predictor module in the 
identification of ptosis [5-7], or drooping of the 
eyelids, is achieved by a multistep image analysis 
process. Each phase is responsible for specific visual 
data processing tasks, which, in total, result in 
determining whether a patient has ptosis. The process 
includes the following six steps: Face Detection, Image 
Clipping for the Left and Right Eyes, Filter 
Application and Information Extraction, Pupil Search, 
and Eyelid Search. 
 
 
3.1. Face Detection 
 

In the first stage of the ptosis identification process, 
face detection plays a key role, for which Predictor 
uses the MediaPipe module. MediaPipe is an advanced 
solution developed by Google that enables the 
detection of faces and their key landmarks (landmarks) 
in images and videos. MediaPipe uses deep learning 
algorithms to efficiently and accurately detect faces in 
images. This allows it to quickly locate faces within 
the recorded video. After face detection, MediaPipe 

identifies key landmarks such as eyes, nose, mouth, 
and facial contour. These landmarks are essential for 
precise image cropping and further analysis of specific 
parts of the face, particularly the eye area. 
 
 
3.2. Image Clipping for Left and Right Eyes 
 

The next step in the process of identifying ptosis is 
to precisely cut the image into separate areas for each 
eye. To do this, Predictor uses facial landmarks 
obtained from the MediaPipe module, focusing on 
specific landmarks for the right and left eyes. 
The Fig. 1 presents the example facial landmarks and 
the Fig. 2 shows an landmarks selection. Landmarks 
with IDs 53 and 233 are used for the right eye (shows 
in the Fig. 2), while 283 and 453 are used for the left 
eye. These specific landmark IDs correspond to the 
extreme positions of the eyes. Based on the selected 
landmarks, rectangles are created to define the area of 
each eye. These rectangles serve as a reference frame 
for cropping the image to include only the area around 
each eye. 

 
 

  
 

Fig. 1. An example facial landmarks (left) and a clipping for the right eye (right). 
 
 

 
 

Fig. 2. Ptosis detection process. 
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3.3. Filter Application and Information Extraction 
 

This step involves a series of image 
transformations designed to enhance key features that 
are essential for detecting changes related to ptosis. 
Each transformation step has its own specific task and 
contributes to better isolation of the anatomical 
structures. 

Image Inversion: The first step is to invert the 
image color. The purpose of this operation is to 
increase the contrast between the eyelid and the eye, 
which facilitates further analysis. 

Conversion to Gray Scale: The image is then 
converted to grayscale. This step reduces the 
complexity of the image by removing color 
information and focusing only on the light intensity. 
This makes it easier to identify edges and other 
important features of the image. 

Image Erosion: Erosion helps remove fine white 
noise from the image and separate objects in the image 
that are close together. 

Image Binarization: The last transformation is 
image binarization, which involves applying a 
threshold that transforms the image into binary (black 
and white). All pixels with a value above the set 
threshold become white and the remaining pixels 
become black. This operation allows for even better 
separation of the eye area from the rest of the image. 
 
3.4. Pupil Search 
 

Binary image processing is used to detect the 
location of the iris and pupil. 

Contour Search: First, the contours are extracted 
from the binarized image. We are able to find 
boundaries between different areas of the image, in this 
case between the iris and the rest of the eye. 

Selection of the Largest Contour: Of the contours 
found, the one with the largest area is selected. The 
largest contour is assumed to correspond to the iris, 
which is crucial for further analysis. 

Calculation of the Minimum Surrounding Circle: 
The minimum circle surrounding the selected contour 
is then calculated. The center of this circle is taken as 
the position of the pupil, and its radius is taken as the 
size of the iris. 

Returning Center and Radius: The coordinates of 
the center of the found circle and its radius are 
returned. These are key data needed to assess the 
condition of the eye and the possible appearance of 
ptosis. 
 
3.5. Eyelid Search 

 
The next step is to extract the contour of the eyelid 

and evaluate its characteristics. 
Determining the Eyelid Contour: First, a binary 

image is processed to isolate the lines and shapes that 
correspond to the edges of the eyelid. This operation 
involves iteratively going through the image columns 
and determining the points that represent the upper 
edge of the eyelid. 

Image Component Labeling: Next, the Connected 
Component Labeling technique is applied to identify 
the different parts of the image and select the one most 
likely to correspond to the eyelid. 

Parabola to Contour Matching: Once the contour 
of the eyelid has been isolated, an attempt is made to 
match the parabolic shape to the designated contour. 
The parabola is chosen for its ability to accurately 
replicate the natural shape of the eyelid. 

Alternative - Line Matching: When the coefficient 
a in the parabola equation is negative (which may 
indicate that the parabola cannot be matched), line 
matching is used. 
 
3.6. Ptosis Decision 

 
Finally, the algorithm has to decide whether the 

observed changes in the position of the eyelid relative 
to the pupil indicate the presence of ptosis. This 
decision is based on the comparison of the position of 
the eyelid with that of the pupil. 

Comparison of the position of the eyelid and the 
pupil: The key criterion in the evaluation is whether 
the eyelid is above or below the pupil. If the eyelid is 
above the pupil, it is considered that ptosis is not 
present. If the eyelid is below the pupil, ptosis is 
diagnosed. 

Use of the Eyelid Matching Function: On the basis 
of a previously matched function (parabola or line), the 
position of the eyelid in relation to the pupil is 
determined. 

Calculation and Decision: On the basis of the 
coordinates of the pupil and the equation of the eyelid 
function, a calculation is made to determine whether 
the eyelid line intersects the level of the pupil. If so, 
the diagnosis of ptosis is made. 
 
3.7. Sequential Analysis in Ptosis Detection 

 
After detecting ptosis in individual frames, 

Predictor proceeds to the sequential analysis stage to 
assess the continuity of ptosis occurrence and avoid 
errors caused by accidental blinks. 

Grouping of Frames: To reduce the impact of 
accidental blinks, the predictor analyzes groups of  
10 consecutive frames. Within each group, it assesses 
whether the majority of them show the presence  
of ptosis. 

Decision on the Occurrence of Ptosis in a Group: 
If a majority of the 10 frames exhibit ptosis, the entire 
group is considered to have ptosis. Otherwise, it is 
assumed that ptosis did not occur in this group  
of frames. 

Visualization of Results in Graph: Based on the 
sequential analysis, a graph is created that shows the 
moments of occurrence of ptosis for both eyes. This 
graph is a graphical representation of the continuity of 
ptosis occurrence throughout the study. 

Awarding of Scores for the Study Phase: The final 
score for this phase of the study is determined by the 
moment when the ptosis occurs continuously until the 
end of the study. If ptosis begins at a given time point 
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and does not cease until the end of the study, points are 
awarded from that point on. 
 
 

4. Conclusions 
 

The system developed, including the automated 
ptosis detection, was practically verified in the 
Department of Neurology and Vascular Diseases of the 
Nerve System of the Poznan University of Medical 
Sciences. Preliminary tests conducted show the 
usefulness of the method in diagnosing symptoms of 
ptosis. However, it should be emphasized that due to 
the small number of patients, we do not yet have a 
sufficiently large sample at this stage of practical use. 
Nevertheless, in the case of patients tested in the clinic, 
the results of the system's performance were consistent 
with physician observation. It shows sufficient 
precision to monitor disease status. 
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Summary: Music plays an important role in the development of each person's cultural identity, helping to express emotions, 
telling stories and creating connections among individuals and communities. Music Information Retrieval (MIR) is an 
emerging field based on software systems designed to extract and retrieve information from music audio files. Some of its 
main tasks allow automatic analysis of audio signals and extract relevant information, such as the genre, artist, mood, or 
musical instruments. In this paper, the automatic recognition of 31 musical instruments is proposed. In our proposal, we firstly 
extract Mel Frequency Cepstral Coefficients (MFCC) and use them as input in an Artificial Neural Network-based classifier. 
Results show that our proposal is competitive, obtaining results of 97.5 % accuracy for 20 classes and 96.4 % accuracy for  
31 classes of musical instruments from a standard dataset. 
 
Keywords: Musical instrument identification, Mel frequency cepstral coefficients (MFCCs), Machine learning, Multi-layer 
perceptron (MLP), Support vector machines (SVM), Nearest neighbors (KNN). 
 

 
1. Introduction 
 

Music is a universal element that is part of the daily 
life of millions of people. Its analysis through signal 
processing makes it possible to extract relevant 
information, such as instrument identification or 
musical structure. Recently, professionals in the field 
of digital music management have faced a great 
challenge due to the growth of available data and 
because of the complexity of data organization. That is 
why one of the main functions of Music Information 
Retrieval (MIR) systems is to automatically analyze 
musical pieces and extract necessary information in 
order to manage such musical pieces [1]. Some of the 
main tasks of MIR systems focus on functions that 
extract artist identification, genre classification, mood 
classification, musical notation, and the identification 
of musical instruments. This is crucial for several tasks 
such as retrieval, sound-source separation, and 
automatic music transcription. 

In the area of musical instrument identification, we 
can find different techniques from the field of Machine 
Learning (ML), for example, the work of S. Prabavathy 
[2]. Prabavathy proposes the automatic classification 
of musical instruments such as trombone, tuba, 
trumpet and piano using SVM and the K-Nearest 
Neighbor (KNN) technique. As part of the results, the 
manuscript shows an accuracy with SVM of 99.37 % 
using these techniques. Mahanta et al. [3] presents an 
Artificial Neural Network (ANN) trained to perform 
classification of 20 different classes of musical 
instruments of the London Philharmonic Orchestra in 
conjunction with the extraction of Mel Frequency 
Cepstral Coefficients (MFCC), in this work an 
accuracy of 97 % was achieved. The main advantage 

of using Machine Learning in Musical Instrument 
Identification in Audio Signals is the ability to identify 
complicated patterns that may be difficult to detect 
using other techniques, a disadvantage is the high 
dependency on training data, which must be extensive 
and with viable features for classification. 

Recently, one of the most popular methodologies 
are those based on Deep Learning. Among the options, 
one relevant technique is the application of 
Convolutional Neural Networks (CNN or ConvNets). 
These refer to a specialized type of Artificial Neural 
Network specifically designed to process data such as 
images or audio signals, spectrograms are used as 
inputs to CNN to learn patterns of how different 
musical instruments are displayed. Maciej Blaszke [4] 
introduces the construction of an algorithm for the 
automation and identification of instruments present in 
an audio extract, using sets of individual CNN per 
instrument. The instruments are bass, drums, guitar 
and piano. In this work, the model efficiency is high, 
with the metric values ranging from 0.86 for the guitar 
to 0.99 for drums. A similar architecture is VGGNet, 
also known as Visual Geometry Group Network, is a 
CNN architecture. 

Chinmay Relkar [5] presents a 4-layer CNN, 
ConvNet inspired by AlexNet, which is named 
VGGNet, in this work, we present a score of the 
evaluation metric F1 of 0.631 (micro) and 0.539 
(macro) in the task of instrument recognition in 
polyphonic music. Relkar also mentions the Region-
based Convolutional Neural Network (RCNN) 
technique, this technique was one of the first 
architectures to address the problem of object detection 
in images using CNN. Although, deep learning-based 
techniques achieve interesting results, one of the main 
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disadvantages is that these approaches need large 
amounts of data to generalize well. Whereas machine 
learning can work with smaller data sets. In addition, 
deep learning requires a lot of tuning and optimization 
of hyperparameters to obtain good results. 

In this paper, we propose an approach that 
combines the extraction of Mel Frequency Cepstral 
Coefficients (MFCCs) and a comparison of different 
ML approaches such as Multi-Layer Perceptron 
(MLP), Support Vector Machines (SVM) and Nearest 
Neighbours (KNN), for 20 and 31 classes of musical 
instruments. The instruments we explore are: Acoustic 
Guitar, Alto Saxophone, Balalaika, Bright Piano, 
Cello, Clarinet, Bowed Double Bass, Pizzicato Double 
Bass, Drums, Electric Bass, Clean Electric Guitar, 
Crunch Electric Guitar, Solo Electric Guitar, Electric 
Piano, Erhu, Flugelhorn, Flute, Fujara, Jinghu, Morin 
Khuur, Bass Organ, Pan Flute, Piano, Shakuhachi, 
Sitar, Tenor Saxophone, Trombone, Trumpet, Ukelele, 
Viola, Violin. We use audio files from the Artificial 
Audio Multitracks Dataset (AAM) introduced by 
Ostermann et al [6]. The main proposal is the use of 
simple approaches that do not require special 
computational power for the recognition of musical 
instruments. 

 
 

2. Methodology 
 

The methodology is presented in Fig. 1, where we 
can observe the two main phases are proposed: training 
and evaluation, both phases consist of 3 important 
parts: Preprocessing of audio files, Extraction of 
MFCCs features and the use of Machine Learning 
(ML) techniques. In this proposal, we explore 
Multilayer perceptron (MLP), Support Vector 
Machines (SVM) and K-Nearest Neighbors (KNN). In 
the following sections, each of the parts will be 
described in more detail. 
 

 
 

Fig. 1. Proposed methodology. 
 
 

3.1. Preprocessing of Audio Files 
 

The analysis of the audio signals begins with the 
use of the Artificial Audio Multitrack (AAM) dataset 
introduced by Ostermann et al [6]. For this work, a 

total of 9300 audio files were taken: 300 audio files for 
each of the 31 classes of musical instruments contained 
in this dataset, making it a balanced selection of file 
numbers for each class. It is worth mentioning that the 
audio files were preprocessed by eliminating the initial 
and final silences. 
 
 
3.2. Feature Extraction 
 

In this paper, we propose to extract 13 of the Mel 
Frequency Cepstral Coefficients (MFCC) from each of 
the digital audios. The MFCC model the way humans 
perceive sound, providing a compact and robust 
representation of the signal of each audio we will 
analyze. They capture the most relevant spectral 
characteristics of each audio and are very useful for 
audio signal classification, since they represent both 
the envelope of the spectrum and its changes over time. 
Providing a compact and robust representation of the 
signal of each audio [7]. The computation of the 
MFCC is described as follows. 

In order to obtain the MFCCs, the following steps 
are necessary: 

Pre-emphasis: A pre-emphasis filter is applied to 
increase the energy of the high frequencies and reduce 
the DC offset (See Eq. (1)). 
(ݖ)ܪ  = 1 − 0.9	(1−)^ݖܽ < ܽ < 1, (1) 
 
where ܽ is typically 0.95. (ݖ)ܪ is the filter in the 
frequency domain, 1 refers to passing the current 
sample as is (gain=1), ܽ(1−)^ݖ	refers to the output is 
equal to the current signal minus a fraction of the 
previous signal. ܽ refers to the filter strength (how 
much emphasis is implemented at high frequencies 
between 0.9 and 1). 

Framing: The signal of each audio file we take is 
divided into short blocks called frames. The typical 
frame length is 20-30 ms (milliseconds) and the offset 
is 10 ms (milliseconds). 

Windowing: display of information in a window or 
frame, where each frame is multiplied by a window 
using the mathematical function for smoothing the 
edges of a segment called Hamming, to reduce 
discontinuities: where N is the length of the frame, the 
formula is presented below. (See Eq. (3)). 

 ݄(݊) =  (2) ,(݊)ݓ(݊)ݔ
ݓ  (݊) = 0.54 − 0.46 cos ቀ ଶగேିଵቁ,	 (3) 
 
where ݓ	(݊) is the value of the window in the sample ݊, where ݊ ranges from 0 to ܰ − 1, 0.54 refers to the 
constant component (DC term of the window).	−0.46 cos ቀ ଶగேିଵቁ refers to the oscillatory component 

that gives the window a smooth shape. 
Spectral estimation: for this step the Discrete 

Fourier Transform (DFT) is applied to each frame to 
obtain the spectral coefficients, the formula is 
presented below (See Eq. (4)). 
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(݇)ݔ = .(݊)ݕ ݁ିమഏಿேିଵି , (4) 
 

 

 0 ≤ ݊, ݇ ≥ ܰ − 1, (5) 
 
where ݔ(݇)	refers to the transformed value at 
frequency ݇. ݇ can also be said to be the result of the 
Discrete Fourier Transform at index ݇, ܰ is the total 
number of samples of the signal. 

The frequency scale of each audio is transformed 
to the Mel scale, this scale focuses on how humans 
perceive sound frequencies, which is closer to human 
perception (See Eq. (6)). 
 ெ݂ = 2525 × ݈݃ ൬1 +	 ళబబ൰, (6) 

 
where ெ݂ is the Mel frequency for the linear frequency	݂. Once we have the Mel scale, the logarithm of the 
energy of the magnitude of the Mel filter response is 
taken as shown in Equation (7). 
௫ܧ  =  ଶ|(݇)ݔ| ∗ ߰(݇)ିଵ , (7) 
 
where |ݔ(݇)| is the amplitude spectrum, ݇ is the 
frequency index, ߰ are the ݅௧ Mel band pass filter,  
1≤ ݅  is the number of Mel-scaled triangular ܯ and ,ܯ ≥ 
band-pass filters. ܧ௫	is the filter bank energy. Finally, 
the Discrete Cosine Transform (DCT) is applied to the 
logarithms of the energy to obtain the Cepstral 
Coefficients of each audio (See Eq. (8)). 
௧௫ܥ  = log(ܧ௧௫)ݏܥ ቂ݈ ⋅ (ଶగିଵ)గଶெ ቃெ௧ୀଵ , (8) 

 
where ܥ௧௫ describes the calculation of a cepstral 
coefficient part of the MFCCs process, ܯ	is the total 
number of frequency bands.	log(ܧ௧௫)	is the logarithm 
of the spectral energy in the band ݐ This is typical in 
the extraction of cepstral coefficients or MFCCs, since 
applying logarithm compresses the signal dynamics.	ቂ݈ ⋅ (ଶగିଵ)గଶெ ቃ	refers to the cosine-weighted term. 

 
 

3.3. Classification Techniques 
 

The first 13 MFCCs were used as input features to 
classification systems. In this manuscript we explore 
the performance of 3 different classic machine learning 
approaches: a multilayer perceptron (MLP), Support 
Vector Machines (SVM) and Nearest Neighbors 
(KNN). We use 80 % of the files from the dataset are 
used for training and the remaining 20 % are used for 
evaluation. 

The architecture for the MLP consists of an input 
layer of 13 neurons where the relevant features are 
selected from the first 13 Mel Frequency Cepstral 
Coefficients (MFCC) of the audio files. Then, the 
network consists of 3 hidden layers, the first layer with 
256 neurons, the second layer with 128 neurons and the 

third layer with 256 neurons. These neurons are 
activated by the ReLU function, which allows the 
model to learn intermediate representations and 
complex patterns of data. The output layer uses a 
SoftMax function to convert the outputs into 
probabilities consistent with as many neurons as 
classes to be predicted. The model is trained for  
2000 epochs using batches of 32 samples, allowing 
continuous adjustment of the weights after each batch, 
optimizing the efficiency of the training process. 

The SVM architecture consists of an algorithm that 
finds the optimal hyperplane that best separates the 
classes of the musical instruments in a feature space by 
maximizing the margin between the closest instances 
of different classes, known as support vectors. The 
ECOC (Error-Correcting Output Codes) technique, 
which focuses on binary classifiers for multi-class 
classification problems, was implemented with the 
RBF (Radial Basis Function) kernel, which is used to 
obtain non-linear data separable into a higher 
dimensional space where the classes of the musical 
instruments can be linearly separated. 

The KNN architecture consists in that when a new 
unlabelled data is presented, the algorithm compares it 
with all the data in the training set and selects the k 
most similar examples, where k is an integer 
representing the number of neighbours to be 
considered. In this case K will be equal to 5 neighbours 
and the Euclidean distance will be implemented to 
measure similarities and thus consider which class it 
belongs out of the classes of musical instruments. 

 
 

3. Experimental Results 
 

In this paper, we evaluate the performance of our 
proposal by using evaluation metrics such as Precision 
(P), Recall (R), F1-score(F) and Accuracy (A). 
Additionally, cross-validation with 5 folds was 
implemented. In the first experiment, we used only  
20 instruments (classes), in order to make a 
comparison with by Mahata et al [2]. In Table 1, we 
can observe the results for 20 classes, the MLP 
managed to outperform the work proposed by Mahata 
et al [2]. In Accuracy, Mahanta obtains 97 % and the 
MLP obtains 97.5 %. SVM and KNN obtained 95.2 % 
and 93.4 %, respectively. 
 
 

Table 1. Performance evaluation and comparison  
20 classes. 

 

Approach P (%) R (%) F (%)  A (%) 

Mahanta [2]
(20 classes) 

97.0 97.0 97.0 97.0 

MLP 
(20 clasess) 

97.5 97.5 97.4 97.5 

SVM 
(20 classes) 

95.2 95.5 95.3 95.2 

KNN 
(20 classes) 

93.4 93.6 93.4 93.4 
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In the second experiment, we increased the number 
of classes to 31 instruments and explored which 
classification method achieves better results. In  
Table 2, we can observe the results for 31 classes, the 
MLP achieved the best results. In Accuracy, the MLP 
scored 96.4 %. SVM scored 94.0 % and KNN scored 
91.7 %. The proposed system was implemented  
in MATLAB. 
 
 

Table 2. Performance evaluation and comparison  
30 classes. 

 

Approach P (%) R (%) F (%) A (%) 

MLP 
(31 classes) 

96.4 96.5 96.4 96.4 

SVM 
(31 classes) 

94.0 94.3 94.1 94.0 

KNN 
(31 classes) 

91.7 91.9 91.6 91.7 

 
 
4. Conclusions 
 

Classification of musical instruments was carried 
out, using Machine Learning techniques and MFCCs. 
The model shows a classification performance with an 
accuracy of 96.4 % for 31 classes and 97.5 % for  
20 classes in the best case with the use of the 
Multilayer Perceptron (MLP). The computation of 
MFCC features has been shown to be simple, yet they 
are robust enough to describe musical instruments. 
Experiments on an extensive dataset show that our 
method yields higher accuracy, outperforming other 

systems proposed for the same task in the  
state-of-the-art. 
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Summary: This study explores the integration of scalable Large Language Model Operations (LLMOps) with advanced 
Retrieval-Augmented Generation (RAG) workflows to address challenges in deploying high-performance AI systems. It 
emphasizes retrieval's role as a critical component in RAG, ensuring relevance and accuracy. The architecture achieves 
enhanced relevance, efficiency, and scalability using technologies like vLLM for low-latency inference, Nvidia A30 GPUs for 
accelerated processing, and OpenSearch for hybrid search. Components like hybrid search, reranking, HyDE, and  
domain-specific embedding adapters optimize retrieval and generation processes. Kubernetes and Docker facilitate dynamic 
scaling and resource management, while on-premises deployment prioritizes data privacy. The SciFact dataset is used to 
evaluate the system’s retrieval and generation performance, with metrics like NDCG and MAP assessing effectiveness. The 
study highlights incremental improvements from enhanced RAG features and test scalability under high query loads, 
demonstrating a robust, efficient solution for sensitive, high-stakes applications. 
 
Keywords: GPU-accelerated inference, Large Language Models (LLMs), RAG workflows, Benchmarking, Inference 
efficiency, Kubernetes, Mind in a Box. 
 

 
1. Introduction 
 

Large Language Models (LLMs) have transformed 
real-time decision-making across industries. However, 
the effectiveness of LLMs is inherently limited by the 
quality of the context provided to them – often stated, 
“LLMs are only as good as the context they receive.” 
While LLMs demonstrate remarkable generative 
capabilities, their reliance on static, pre-trained 
knowledge poses challenges in dynamic, real-world 
applications where up-to-date and domain-specific 
information is essential. Retrieval-augmented 
generation (RAG) addresses this limitation by 
incorporating real-time retrieval mechanisms, ensuring 
that responses are grounded in accurate, relevant, and 
fresh data. 

Despite the advantages of RAG, retrieval remains 
a critical bottleneck. Traditional retrieval systems 
often struggle with balancing relevance and efficiency, 
especially for ambiguous or specialized queries. This 
study focuses on optimizing retrieval in RAG 
workflows through hybrid search techniques, 
reranking strategies, and domain-adaptive embedding 
models. By integrating scalable LLMOps with 
enhanced retrieval mechanisms, we aim to improve 
response accuracy, minimize latency, and ensure 
robust decision-making in sensitive, high-stakes 
applications. 
 
 
2. RAG (Retrieval Augmented Generation) 
 

Retrieval-Augmented Generation (RAG) improves 
AI-generated responses by integrating retrieval-based 
systems with generative models, ensuring outputs are 
grounded in factual information. Unlike standalone 

generative models that rely solely on pre-trained 
knowledge, RAG retrieves relevant documents from 
external sources, reducing hallucinations and 
improving adaptability for knowledge-intensive tasks 
such as customer support, research assistance, and 
legal or medical analysis. By dynamically 
incorporating updated information, RAG allows large 
language models (LLMs) to generate more precise, 
context-aware, and up-to-date responses. 

However, effective retrieval remains a major 
challenge, as standard retrieval methods may fail to 
fetch the most relevant documents, particularly for 
vague, complex, or highly specialized queries. Sparse 
retrieval methods, such as keyword-based searches 
(e.g., BM25), often struggle with semantic 
understanding, while dense retrieval models using 
embeddings may overlook exact keyword matches. 
This imbalance can lead to over-retrieval of loosely 
related documents or under-retrieval of critical 
information. Additionally, the quality of retrieved 
results heavily depends on the structure and 
completeness of the knowledge base, making retrieval 
a significant bottleneck in high-stakes applications like 
legal review, medical diagnosis, and scientific 
discovery. 

To address these challenges, modern RAG 
workflows employ several advanced retrieval 
techniques. Hybrid Search [3] combines sparse 
retrieval (like BM25) with dense retrieval (using 
neural embeddings) to ensure both keyword-specific 
and semantic relevance. Sparse methods excel at 
retrieving exact keyword matches, while dense 
retrieval captures conceptual relationships, improving 
recall and precision. Reranking further refines 
retrieval results by applying transformer-based models 
to score and reorder documents, ensuring that only the 
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most relevant ones are passed to the LLM. 
Hypothetical Document Embeddings (HyDE) [1, 7] 
generate synthetic documents based on the user’s 
query, enriching the retrieval space and improving 
performance in sparse or highly specialized domains. 
Embedding adapters [2, 8] fine-tune pre-trained 
embeddings for specific fields like medicine or law, 
optimizing retrieval without requiring complete 
retraining. Together, these techniques enhance 
retrieval quality, making RAG more reliable for 
complex, domain-specific applications. 
 
 
3. LLMOps 
 

The infrastructure system selected for the 
experimental protocol, Mind in a Box (M/B) Catalyst, 
operates a package called Mind in a Box AI+ which 
integrates and operationalizes both LLMOps and the 
vLLM Inference Server with Kubernetes, in a turn-key 
Equipment as a Service solution. This provides a solid 
foundation for efficient, scalable, and resilient 
LLMOps pipelines. Kubernetes provides the 
orchestration layer, ensuring consistent deployment 
and management of containerized LLM workflows 
across diverse infrastructures. Its features, such as 
auto-scaling, workload balancing, and fault tolerance, 
enable dynamic scalability and high availability, 
ensuring smooth operations even during varying query 
loads. Role-based access control (RBAC) and secure 
namespaces further enhance data privacy and 
regulatory compliance, making Kubernetes an 
essential component for managing sensitive 
applications. 

Within this orchestrated framework, the M/B 
Catalyst infrastructure and the supported inference 
server optimize LLM performance by enabling low-
latency and high-throughput inference. By leveraging 
on one hand advanced memory management 
techniques such as dynamic caching and efficient 
tensor partitioning, it maximizes GPU utilization and 
minimizes computational overhead. On the other hand, 
a proprietary data bus enables high-performance 
concurrency, which ensures responsiveness, making it 
ideal for real-time, high-demand applications. 
Seamless integration with APIs and compatibility with 
various LLM architectures further simplify 
deployment and operation. Together, Kubernetes and 
the inference server provide a robust and integrated 
solution for scalable LLMOps. Kubernetes handles 
deployment, scalability, and fault tolerance, while the 
inference server focuses on efficient inference, 
ensuring that LLMs operate at peak performance with 
minimal latency. Coupled with a high-performance 
computing solution targeted at reducing concurrency 
bottlenecks, such as the proprietary M/B Catalyst 
system, the integrated architecture aims to support 
peak inference performances for on-premise and 
hybrid topologies. Not only does this synergy enable 
organizations to deploy and manage large-scale LLMs 
in a reliable, efficient, and secure manner, addressing 
the demands of modern, high-performance AI 

applications. But coupled with an efficient data bus 
infrastructure, it enables to support LLMops with 
comparatively much smaller energy footprints and 
waste heat emissions than similar GPUaaS-based 
LLMops propositions. 
 
 
4. Experimentation Setup and Methodology 
 

The experimentation setup evaluates a scalable 
Large Language Model Operations (LLMOps) 
pipeline integrated with advanced Retrieval-
Augmented Generation (RAG) workflows. This 
section outlines the infrastructure, datasets, evaluation 
metrics, and methodology employed. 
 
 
4.1. Infrastructure 
 

The general architecture was supported by an  
on-premises combination of Mind in a Box Catalyst 
(GPU-based for LLMOps) and Mind in a Box Zen 
(CPU-based for DataOps) high-performance 
computing systems. The hardware infrastructure 
proposed by the M/B Catalyst for LLMOps includes 
Nvidia A30 GPUs, which support accelerated tensor 
computations and optimized inference capabilities, 
alongside 48-core Intel Xeon Gold 6338N processors 
for high-performance task execution. Additionally, the 
Mind in a Box Zen DataOps cluster was equipped with 
96 (24x4) GB of RAM and 2 TB of SSD storage to 
handle data efficiently and ensure effective caching 
mechanisms. 

This infrastructure is used according to two 
modalities. A first one, purely on premise, as 
illustrated below in Fig. 1, where the LLMops 
architecture described in the previous chapters is 
deployed exclusively on premise. 
 

 
 

Fig. 1. LLMops architecture employed for a purely  
on-premises workflow modality. 

 
A second modality, illustrated below in Fig. 2, is 

similar but based on a hybrid workflow, using the 
OpenAI LLM PaaS services and APIs. 

The software infrastructure incorporated 
Kubernetes (v1.25) for managing containerized 
workflows. Kubernetes was configured with role-
based access control (RBAC) and secure namespaces 
to enhance data privacy. For inference, the vLLM 
server was employed to deliver low-latency and  
high-throughput large language model inference. 
OpenSearch, deployed on the M/B Zen DataOps 
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system as the hybrid search engine, supporting both 
vector embeddings and BM25 ranking mechanisms. 
Python (v3.10), PyTorch (v2.0), and LangChain were 
utilized for the seamless integration of LLM and 
retrieval components, while Docker (v24) was used for 
the packaging and deployment of RAG components 
and LLM. 
 

 
 

Fig. 2. LLMops architecture employed for a hybrid 
workflow modality. 

 
 
4.2. Dataset and Models 
 

The study utilized the SciFact [6] dataset from the 
BEIR benchmark [5], a resource specifically designed 
for scientific claim verification. The dataset consists of 
expert-written scientific claims paired with annotated 
abstracts from scientific literature, which serve as 
evidence. These abstracts are labeled with veracity and 
rationales, indicating whether they support or refute 
the claims. This structure allows for a comprehensive 
evaluation of a system's ability to retrieve relevant 
information and assess the validity of scientific 
statements effectively. 

For the models, the study employed a combination 
of advanced embedding and generative techniques. 
The embedding model used was BAAI/bge-small-en-
v1.5, developed by the Beijing Academy of Artificial 
Intelligence. This model transforms input text into 
384-dimensional vectors, providing efficient semantic 
representation and similarity computation while 
maintaining a balance between performance and 
computational efficiency. To generate Hypothetical 
Document Embeddings (HyDE) queries, the study 
utilized gpt-4o-mini-2024-07-18, a smaller and  
cost-effective variant of OpenAI's GPT-4o series. 
Despite its reduced size, this model maintains  
state-of-the-art intelligence and is well-suited for 
generating high-quality synthetic queries to enhance 
retrieval. Additionally, a linear adapter module was 
implemented to fine-tune the embeddings for the 
specific task. This adapter, consisting of a single linear 
layer, refines the embeddings using a triplet margin 
loss function with a margin parameter of 1.0, 
optimizing their ability to distinguish between relevant 
and non-relevant documents for the verification task. 
 
 

4.3. Evaluation Metrics 
 

The system's retrieval performance was evaluated 
using key metrics at cutoff points of 2, 5, and 10 to 

ensure high-quality and contextually relevant results. 
Normalized Discounted Cumulative Gain (NDCG) 
assessed the ranking of results, prioritizing highly 
relevant documents early in the list. Mean Average 
Precision (MAP) measured precision across recall 
levels, ensuring a balance between completeness and 
relevance. Additionally, Recall evaluated the system's 
ability to retrieve all relevant documents, while Hit 
Rate measured the likelihood of at least one relevant 
document appearing in the top-k results. These metrics 
ensured the system delivered comprehensive and 
accurate outputs, critical for tasks relying on  
precise retrieval. 

Mean Reciprocal Rank (MRR) was also included 
to evaluate how quickly the first relevant document 
was retrieved, minimizing delays in accessing key 
information. Together, these metrics provided a robust 
assessment of the system's ability to prioritize, retrieve, 
and present relevant results effectively. This 
evaluation ensured the system met the high demands 
of tasks where the quality, ranking, and speed of 
retrieved information directly impact performance. 
 
 
4.4. Methodology 
 

This study benchmarked and compared retrieval 
techniques to enhance Retrieval-Augmented 
Generation (RAG) workflows. The methodology 
included data ingestion, baseline retrieval evaluation, 
advanced retrieval implementation, and systematic 
evaluation. A scientific corpus was preprocessed into 
structured LangChain Document objects for 
compatibility and experimentation. Dense retrieval 
used the BAAI/bge-small-en-v1.5 embedding model 
to encode documents into vector representations, 
indexed in an OpenSearch vector database with SSL, 
authentication, and bulk ingestion for security and 
scalability. This enabled semantic retrieval even 
without explicit lexical matches. A BM25Retriever 
was also trained on the corpus for sparse retrieval using 
TF-IDF scoring, stored as a pickle file for consistent 
benchmarking. 

The retrieval pipeline began with BM25-based 
sparse retrieval for a baseline evaluation, followed by 
dense retrieval using BAAI/bge-small-en-v1.5 
embeddings. A hybrid strategy combined BM25 and 
dense retrieval scores to improve precision and recall.  

The FlashRank reranker refined the top  
50 documents, reordering them for contextual 
relevance, with the top 10 selected for evaluation. 
Hypothetical Document Embeddings (HyDE) were 
introduced to address claim ambiguities, using the  
gpt-4o-mini-2024-07-18 model to generate synthetic 
passages as augmented queries, bridging contextual 
gaps. Finally, a task-specific linear adapter was  
fine-tuned on the SciFact dataset using triplet margin 
loss, aligning query embeddings with positive 
documents and distancing them from negatives, with 
dynamic random negative sampling for robustness. 

 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

122 

Table 1. Performance comparison of various retrieval methods. 
 

Metric Cut off BM25 Dense Hybrid 
Re 

Rank 
HyDE Adapter 

Recall 
@2 0.53 0.65 0.65 0.67 0.68 0.76 
@5 0.63 0.77 0.76 0.79 0.83 0.81 

@10 0.68 0.87 0.84 0.87 0.91 0.84 

Hit Rate 
@2 0.55 0.68 0.68 0.70 0.72 0.78 
@5 0.65 0.79 0.78 0.82 0.86 0.83 

@10 0.71 0.88 0.86 0.88 0.92 0.85 

nDCG 
@2 0.51 0.64 0.63 0.64 0.67 0.75 
@5 0.55 0.69 0.68 0.70 0.74 0.77 

@10 0.57 0.72 0.71 0.72 0.77 0.78 

MAP 
@2 0.50 0.61 0.61 0.61 0.65 0.73 
@5 0.52 0.65 0.65 0.65 0.71 0.75 

@10 0.53 0.67 0.66 0.67 0.72 0.75 

MRR 
@2 0.52 0.64 0.64 0.63 0.68 0.75 
@5 0.54 0.67 0.67 0.67 0.72 0.76 

@10 0.55 0.68 0.68 0.68 0.73 0.76 
 
 

The loss curve, shown below, illustrates the steady 
convergence of the model during training (Fig. 3). 

 

 
 

Fig. 3. Training Loss Curve. 
 

The training process was implemented using 
PyTorch, with a lightweight linear adapter layer. 
Optimization was performed using the AdamW 
optimizer with a learning rate of 0.003, a linear 
warmup scheduler, and gradient clipping to stabilize 
training. The model was trained for 50 epochs with a 
batch size of 32, during which the triplet margin loss 
consistently decreased, indicating improved 
embedding alignment for query-document relevance. 
This fine-tuning step enhanced the dense retrieval 
pipeline's ability to deliver task-specific relevance for 
scientific fact-checking workflows. 

The system's retrieval performance under high-
demand scenarios was evaluated using a structured 
query load testing methodology. The ShareGPT 
dataset, comprising diverse and realistic 
conversational prompts, was used to simulate  
real-world usage. Queries were preprocessed to ensure 
appropriate token lengths, maintaining the 
representativeness of typical usage scenarios. The 
neuralmagic/Meta-Llama-3-1-8B-Instruct-FP8 model, 
optimized for high-performance inference, was used 
for benchmarking. It was configured with a maximum 
context length of 16,384 tokens to handle complex 
conversational tasks. The serving framework, 

supported by Kubernetes, enabled dynamic batching, 
efficient token scheduling, and resource allocation to 
manage concurrent requests with minimal latency. 

Testing involved dispatching all queries 
simultaneously to simulate extreme burst load 
scenarios, mimicking sudden spikes in demand. Key 
performance metrics, including retrieval latency, query 
throughput, and resource utilization, were monitored. 
Additional granularity was achieved by analyzing time 
to first token (TTFT), time per output token (TPOT), 
and inter-token latency (ITL). This comprehensive 
evaluation assessed the system's scalability, 
responsiveness, and resource efficiency under extreme 
stress conditions. 
 
5. Results 
 

The following section discusses the retrieval 
accuracy metrics and performance metrics results 
obtained after experiments. 

Benchmarking results highlight performance 
differences among retrieval methods – BM25, Dense, 
Hybrid, Reranking, HyDE, and Adapter – across 
metrics like recall, hit rate, MRR, MAP, nDCG, and  
R-Precision. BM25, a traditional method, shows the 
weakest performance (recall@10: 0.68, hit rate@10: 
0.71), serving as the baseline. Dense retrieval 
improves significantly (recall@10: 0.87, hit rate@10: 
0.88), demonstrating the effectiveness of dense 
embeddings. Hybrid methods (recall@10: 0.84, hit 
rate@10: 0.86) perform comparably to Dense, while 
Reranking slightly enhances results (recall@10: 0.87, 
hit rate@10: 0.88). HyDE excels with the highest 
recall@10 (0.91), hit rate@10 (0.92), and nDCG@10 
(0.77), showcasing superior relevance and ranking. 
Adapter leads in early precision (recall@2: 0.76, hit 
rate@2: 0.78) and achieves the highest MRR (0.76) 
and MAP (0.75), making it ideal for tasks prioritizing 
top-ranked results. Overall, advanced methods 
outperform BM25, with the choice depending on 
specific retrieval goals: Adapter for early precision, 
HyDE for recall and hit rate. 
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Fig. 4. Comparison of metrics across different retrieval strategies. 
 
 

Table 2. Throughput Metrics. 

 
Throughput Value 

Request Throughput (req/s) 7.25 
Input Token Throughput (tok/s) 1684.97 
Output Token Throughput (tok/s) 1409.03 

 
Benchmarking of the on-premises 

neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8 model 
shows high efficiency, with a throughput of  
7.25 requests/second, input token processing at 
1684.97 tokens/second, and output generation at 

1409.03 tokens/second. Latency metrics reveal a mean 
Time to First Token (TTFT) of 46.83 seconds (median: 
41.14 s, P99: 104.92 s), indicating occasional delays 
for complex queries. Token generation speeds are 
reasonable (mean TPOT: 172.00 ms, median:  
150.75 ms), though P99 TPOT spikes to 872.46 ms. 
Inter-Token Latency (ITL) is efficient (median:  
85.92 ms) but peaks at 724.95 ms (P99). The 
deployment demonstrates strong throughput and 
scalability for batch tasks but requires latency 
optimization for real-time applications. 
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Table 3. Latency Metrics. 
 

Metric 
Mean 

(s) 
Median 

(s) 
P99 (s) 

Time to First Token 
(TTFT) 

46.83 41.14 104.92 

Time per Output 
Token (TPOT) 

0.172 0.151 0.872 

Inter-Token Latency 
(ITL) 

0.372 0.086 0.725 

 
 
6. Conclusion 
 

This study successfully integrates scalable 
LLMOps with advanced RAG workflows, to enhance 
relevance, efficiency, and scalability. Techniques such 
as hybrid search, reranking, HyDE, and embedding 
adapters significantly improve retrieval and generation 
performance, as demonstrated by benchmarking on the 
SciFact dataset using metrics like nDCG, MAP, MRR, 
HitRate and Recall. The system excels in high-stakes, 
sensitive applications, offering robust, real-time 
decision-making capabilities while prioritizing data 
privacy and security. 
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Summary: Optimizing lighting systems is crucial for reducing energy consumption and enhancing occupant well-being in 
sustainable building design. A key challenge is creating energy-efficient lighting systems that adapt to individual users' visual 
comfort needs. This paper proposes a two-phase approach for a self-adaptive and self-learning lighting control system. In the 
first phase, Long Short-Term Memory (LSTM) networks optimize the placement of photosensors by modelling dynamic 
lighting conditions over time. In the second phase, Reinforcement Learning (RL) enables real-time adaptation of lighting based 
on occupant preferences, maximizing energy efficiency and visual comfort. This system ensures personalized, efficient lighting 
in office environments while minimizing energy waste. 
 
Keywords: Long short-term memory, Reinforcement learning, Visual comfort, Smart lighting systems. 
 

 
1. Introduction 
 

Lighting is a major source of energy demand [1], 
and optimizing lighting systems in sustainable building 
design is crucial to reducing energy consumption [2]. 
Moreover, as lighting conditions significantly impact 
human health and well-being and affect task 
performance [3], visual comfort is the counterpart to 
be considered. As energy efficiency becomes 
increasingly important in environmental sustainability, 
a key challenge in built environments, particularly in 
office spaces, is creating energy-efficient lighting 
systems adaptable to individual users’ varying visual 
comfort needs [4-7]. 

To address this issue, recent advancements in 
technologies such as distributed sensing and machine 
learning have opened new avenues for developing 
intelligent lighting systems that can dynamically 
respond to energy efficiency and personalized comfort 
requirements. However, a critical issue of such 
systems is the positioning of the photosensors since 
they monitor ambient light levels and inform lighting 
control systems to adjust illumination accordingly. 

Due to the dynamic nature of lighting conditions – 
impacted by factors such as time of day, building 
layout, and individual preferences – if placed 
optimally, photosensors can reduce artificial lighting 
in the presence of sufficient daylight, thus reducing 
overall energy consumption. Indeed, lighting sensors 
cannot be placed on the work plane because, in this 
position, they do not effectively capture the full range 
of environmental lighting conditions and can be 
obstructed by objects or human movement. It is more 
effective to place sensors at elevated positions, such as 
the ceiling or high on walls. Moreover, finding an 
optimal placement of these sensors also means 
ensuring a great correlation between the level of 
illuminance on the work plane and those acquired by 

the sensors. Hence, the proposed solution introduces a 
two-phase approach to build a self-adaptive and  
self-learning lighting control system for energy 
efficiency and personalized comfort requirements. 

In the first phase, photosensor placement 
optimization is achieved using Long Short-Term 
Memory (LSTM) networks, which capture temporal 
dependencies in sequential data. Thus, LSTMs model 
lighting conditions’ dynamic and time-varying nature. 
Using LSTM models, optimal lighting conditions can 
be predicted based on historical data. The optimally 
performed LSTM model indicates the sensor that best 
supports energy-efficient lighting controls. 

The second phase introduces Reinforcement 
Learning (RL) to enable real-time adaptation of 
lighting systems. RL allows the system to continuously 
learn from its interactions with the environment, 
adapting visual comfort parameters based on occupant 
preferences. The system dynamically adjusts lighting 
and illuminance uniformity using a reward-based 
framework to maximize energy efficiency and visual 
comfort. This real-time learning ensures that the 
lighting control system remains flexible and 
personalized, providing an optimal lighting experience 
in a workplace environment. This adaptive control 
system not only enhances occupant comfort but also 
ensures that lighting energy consumption is minimized 
without compromising visual quality. 

In this paper we present a preliminary case study to 
assess the strengths of the proposed solution. 
 
 
2. Methods 
 
2.1. Visual Comfort 
 

Visual comfort is typically assessed by evaluating 
factors such as the amount of light, light uniformity, 
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colour rendering quality, and the risk of glare. In this 
preliminary paper, we consider only the contribution 
of the amount of light and its uniformity. 

Good visibility is defined by adequate amount of 
light, allowing occupants to accomplish their tasks. 
Discomfort can be caused by either too low or too high 
light levels. It is assessed by the illuminance (Eq. (1)): 
 

[ݔݑ݈]ܧ  = [୪୫][మ], (1) 

 
where A is the work plane surface and Φ is the 
luminous flux on the surface. In typical offices, EN 
12464-1 standard [8] suggests a target value of 500 lux. 

On the other hand, the illuminance Uniformity 
(UO) [8] describes how evenly light spreads over a task 
area. A well-designed uniformity of lighting (UO) 
helps prevent visual stress by minimizing the need for 
frequent eye adjustments between over-lit and  
under-lit areas, thereby reducing the risk of visual 
discomfort. The Eqs. (2) and (3) allow to compute 
uniformity: 

 

 ܷܱ௫ = ாாೌೣ, (2) 

 

 ܷ ܱ௩ = ாாೌೡೝೌ, (3) 

 
where ܧ, ܧ௫ and ܧ௩ are the work plane's 
min, max, and average illuminance. Many lighting 
standards [9] require an ܷ ܱ௩= 0.8 or  ܷܱ௫ = 0.7. 

Finally, a further element to be considered is the 
Daylight Factor (DF) [9] that is a measure used to 
evaluate the amount of natural light entering in a 
building. It compares the light level inside a space to 
the light level outside (on an overcast day), providing 
an indicator of how much natural daylight is available 
indoors. It is defined as: 

 

ܨܦ  = ቀ ாாೠቁ ∗ 100	%, (4) 

 
where ܧis the illuminance due to daylight at a point 
on the indoor working plane, ܧ௨௧ is the external 
horizontal illuminance. 
 
 
2.2. LSTM 
 

The architecture of the adopted deep neural 
network is shown in Fig. 1, where the LSTM cells are 
used as basic building blocks in the hidden layers (see 
Fig. 2). The input layer mainly processes the data, 
receiving temporal data organized in time windows. In 
our model, the inputs are the current illuminance 
values of a given photosensor, solar elevation and 
azimuth values, and the illuminance value on the work 
plane at previous time steps. LSTM layers store  
long-term information due to their gating mechanisms. 
Dense layers process the output of the LSTM layers 
and provide the final prediction, such as the future 

illumination level on the work plane. Fig. 2 shows the 
architectural scheme of the LSTM cells. The Root 
Mean Squared Error is used to evaluate the optimal 
sensor position; it is calculated as the mean of the 
squares of the differences between predictions ̂ݕ and 
actual values ݕ of the illuminance on the work plane. 

 

 
 

Fig. 1. LSTM Architecture. 
 

 
 

Fig. 2. LSTM Cell. 
 
 

2.3. Reinforcement Learning Model 
 

In the RL model, the agent learns the optimal 
policy through trials during the interactions with the 
environment. This interaction process is formulated as 
a Markov Decision Process, and we use Q-learning 
algorithms founded on the Bellman Equation: 

,௧ݏ)ܳ  ܽ௧) ← ,௧ݏ)ܳ ܽ௧) + ߙ ×× ܴ௧ + ߛ ×maxశభ ,௧ାଵݏ)ܳ ܽ௧ାଵ) − ,௧ݏ)ܳ ܽ௧)൨  (5) 

 
The reward function is formalized according to the 

following equation: 
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ܴ௧ = ݓ ቆ1 − ቤ ௧ܷ − ௧ܷ௧௧ܷ௧ ቤቇ ாݓ+	+ ቆ1 − ቤܧ௧ ௧௧ܧ௧௧ܧ	− ቤቇ 

(6) 

 
where ௧ܷ and ܧ௧ are the values of uniformity and 
illuminance reached at time t, ௧ܷ௧ and ܧ௧௧ are 
the values of uniformity and illuminance that the agent 
aims to achieve, as specified by the user. ݓ and ݓா 
are weights associated with uniformity and 
illuminance. 

The agent is incentivized to adjust its actions to 
bring uniformity and illuminance as close as possible 
to the user-defined target values, and the reward 
reflects how well it achieves these targets. 

 
 

3. Case Study 
 

For the experimental setup, we considered a typical 
office with several photosensors collecting different 
light exposure levels. One sensor is positioned on the 
work plane to capture the real illuminance levels, and 
the others are located at different office points. After 
model training and the assessment of the optimal 
sensor, the system is tested at runtime to evaluate 
energy performance and visual comfort derived from 
the system's adaptation to user preferences. 

In this preliminary assessment, to evaluate visual 
comfort in a controlled environment, we designed an 
experimental setup considering a work plane of 
dimensions 2 m² (i.e., width=2m and depth=1m). The 
main light source is a desk lamp initially placed at 
position x=170, y=30, z=50 (with the axes origin 
placed at the top left corner of the desk), as shown in 
Fig. 3. Th desk lamp can be moved on the work plane 
and adjusted in height up to 1.5 meters. 
 

 
 

Fig. 3. Reference system with respect to the desk. 
 

The system is configured to assess user preferences 
based on two primary metrics: illuminance and 
uniformity. The target illuminance is set between  
500 to 700 lux, representing the ideal lighting range for 
visual comfort in typical work environments. This 
range accounts for both the adequacy and comfort of 
light levels for prolonged tasks. 

Additionally, the uniformity of illuminance across 
the workplace is set as a critical parameter, with a 
target uniformity value of ≥ 0.7. This ensures a 
consistent light distribution across the workplace to 

avoid areas of excessive brightness or insufficient 
illumination. 

Finally, we also consider the relationship between 
artificial and natural lighting to achieve the optimal 
balance of illuminance and uniformity, both of which 
are essential for maintaining visual comfort. Hence, 
the contribution of natural light is considered by 
assuming a daylight factor of 2. Although, the outdoor 
illuminance levels vary throughout the day due to the 
changing position of the sun and atmospheric 
conditions and the exact values can shift depending on 
the weather or other factors, there are general patterns 
to expect at different times of the day. For this 
simplified experimental setup, we considered the 
outdoor illuminance Eout for four parts of the day  
as follows: 

1. Morning (Post-Sunrise to Noon) Eout=10000 lx; 
2. Noon Eout=50000 lx; 
3. Afternoon (Post-Noon to Sunset) Eout=5000 lx; 
4. Evening (Sunset to Night) Eout=500 lx. 
These values are used to calculate the contribution 

of natural light to the overall lighting conditions, 
working in combination with the artificial light 
provided by the desk lamp. 
 
 
3.1. Preliminary Results 
 

To demonstrate the efficacy of the proposed 
approach, we present preliminary results focused both 
on energy efficiency and on the achievement of user 
preferences. compares energy waste using the optimal 
sensor detected by our approach and a test sensor 
placed according to typical guidelines concerning the 
real illuminance level on the work plane. The graphs 
in Fig. 4 indicate that the test sensor leads to 
inefficiencies in the lighting control system, causing 
periods of excessive energy waste. In contrast, the 
lighting system with the optimal sensor performs much 
more efficiently, with minimal energy waste, aligning 
well with the predicted values. 

As concerns the visual comfort, Table 1 reports the 
results of our experiments during the four parts of the 
day. As we can see, in the morning, with an outdoor 
illuminance of 10000 lux, from the initial position 
(x=170, y=30, z=50), the desk lamp has to be lifted at 
the position (x=170, y=25, z=140) and it has to provide 
a luminous flux of 300 lumens to meet the user’s target 
preference. By adopting these actions, the uniformity 
achieved is 0.761 and the work plane illuminance is 
500 lux. 

At noon, the outdoor illuminance increases to 
50000 lux, owing to the sun's high position in the sky. 
The uniformity value of 1.0 indicates perfect 
distribution of light, meaning that the light is evenly 
spread across the work plane. The work plane 
illuminance of 1000 lux is easily achieved with the 
ambient daylight alone, meaning that no additional 
flux is needed from the desk lamp. In fact, the lamp 
remains in the same position, as natural light is 
sufficient to meet the required lighting levels indoors. 
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In the afternoon, with the outside illuminance 
decreasing to 5000 lux, the desk lamp again plays a 
more important role in supplementing the natural light. 

The optimal position of the lamp shifts to (x = 170, 
y = 20, z = 150) and the uniformity value drops slightly 
to 0.699, indicating a somewhat less even light 

distribution compared to noon. To achieve the target 
work plane illuminance of 500 lux the lamp needs to 
provide 400 lumens. This increase in luminous flux 
compared to the morning is due to the lower outdoor 
light levels as the sun moves toward the horizon. 

 
 

 
 

Fig. 4. Energy waste comparison. 
 

 
Finally, by the evening, outdoor illuminance has 

significantly reduced to 100 lux. As the contribution of 
natural light continues to diminish, the lamp must now 
provide 500 lumens of luminous flux to compensate 
the decreased ambient light and ensure the space 

remains adequately illuminated. To achieve the most 
effective lighting and uniformity for the work surface, 
the lamp should be moved to a more central position 
relative to the desk (x=135, y=25, z=150). 

 
 

Table 1. Results of RL Adaptation. 
 

 
 
 

4. Discussions and Conclusions 
 

In this paper, we presented a self-adaptive and  
self-learning lighting control system for energy 
efficiency and personalized comfort requirements. 

At this stage, we have successfully realized the 
system's core functionality, which revolves around 
implementing and training two key components, the 
LSTM network, and the RL model, and integrating 
these models for real-time decision-making. 

We are currently developing the whole prototype 
of our system, by using Python libraries such as Keras 
and TensorFlow to handle machine learning models 
and the TinyTuya Python library to interface with 
smart lamp. For data acquisition, we are using Delta 

Ohm HD 2021T (measuring range 0.02e20 klx) 
photosensors for monitor illuminance levels, enabling 
the system to adjust lighting based on ambient light 
conditions. The system is designed to control smart 
desk lamps, allowing for real-time adjustments of 
lighting settings, such as illuminance and on/off status, 
and to provide suggestions to the user for the most 
suitable desk lamp position. Then, the system will be 
deployed on a server to handle the control logic and 
data processing. 

Regarding the computational aspects, currently, the 
core functionality of the systems runs on a Mac Studio 
with standard specifications (Apple M2 Max chip,  
64 GB of RAM, 1 TB SSD with macOS Sonoma 
V.14.6). Thus, the training of the LSTM model takes 
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only a few minutes when using historical data. It’s 
important to note that this training time is required only 
during the initial setup. Once the model is trained, it 
can be used for real-time predictions and adjustments 
without the need for retraining. At runtime, the system 
uses the trained LSTM model to process incoming 
data, and the complete sensing-control-adapt loop is 
achieved in just a few seconds. 

No additional specialized hardware is required 
beyond the light sensors for data collection and the 
smart desk lamps for control. The system is designed 
to operate efficiently on the standard hardware 
mentioned, ensuring that it can function in real time 
with minimal latency. 

Our next goal is to expand and refine this prototype 
into a comprehensive system that will incorporate user 
feedback to optimize lighting control in various 
environments. Additionally, we plan to conduct a 
series of experiments to evaluate the system’s 
performance and gather data for post-assessment. 
These experiments will help us assess the effectiveness 
of our approach and identify areas for further 
improvement. 
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Summary: Nowadays, one of the most challenging tasks for very-large digital music datasets is their automatic management 
in terms of genre, mood, style, rhythm, and others. Such management is usually performed through metadata or descriptors of 
the musical features. The rhythm is one of the most notable features in music. However, its representation is still a challenge. 
It is desirable to extract it automatically and express it in the form of descriptors. In this work, the automatic computation of a 
descriptor of the rhythm is proposed. An experiment is conducted with recordings of a drum set containing performances of 
different musical genres. An energy based detection function and classifiers are used to identify musical notes onsets. The 
onsets are the raw material for the computation of Pairwise Variability Indexes that represents the irregularity in the rhythm. 
These indexes allow to organize the phrases based on the variability of the rhythm. 
 
Keywords: Music information retrieval, Pairwise variability index, Short-time Fourier transform, Spectral flux detection 
function, Artificial intelligence. 
 

 
1. Introduction 
 

The Music Information Retrieval (MIR) research 
field aims to automatically manage large collections of 
digital audio content [1]. In order to classify a given 
music audio, different descriptors must be considered 
e.g. timbre, melody, rhythm, pitch, harmony, key, 
structure or lyrics. Given the massively increasing 
volumes of digitized music, the development of an 
automatic extraction of descriptors is an  
emerging need. 

The rhythm is defined as the succession of sounds 
and silence over time. In musical compositions, the 
percussion instruments usually have the role of 
building what is called the rhythmic base, which 
determines the pulse of the musical piece. It is different 
with the other types of instruments, which are usually 
used to build melody or harmony. 

In the existing literature, Shete and Deshmukh [2] 
propose to recognize five rhythmic patterns from 
North Indian music called Talas in the percussive 
instrument Tabla. The rhythm and rhythm-related 
aspects have been represented in other forms, such as 
indexes, metrics, statistics, or probabilities.  
Condit-Schultz [3] reviews the use of the Normalised 
Pairwise Variability Index (nPvi) in music to compare 
rhythmic patterns. It is remembered that it was 
originally proposed to compare rhythms in music with 
rhythms in speech. Chakraborty et al. [4], use several 
metrics to compare rhythms across languages, 
including Pairwise Variability Indexes (Pvi). The nPvi 
and the raw version, the Raw Pairwise Variability 
Index (rPvi). Panda [5] lists features extracted by 
toolboxes. These features are: Beat Spectrum, Beat 
Location, Onsets, Event Density, Average Duration of 

Events, Tempo, Metrical Structure, Metrial Centroid 
and Strength, Note Duration statistics, Note Duration 
Distribution, Ratios of Note Duration Transitions, 
Rhythmic Fluctations, Tempo Change and Rhythmic 
Clarity. Senn et al. [6] give probability values in a 
study to measure the complexity of rhythmic drum 
patterns. The probability correlates with the metrics: 
number of onsets, Syncopation Index, Kolmogorov 
Complexity and Revised Syncopation Index. 

One of the most used indexes for the representation 
of rhythm is the Pvi. The Pvi represents the variability 
of the rhythm. A high Pvi value expresses an irregular 
rhythm, while a low Pvi indicates a constant and 
regular rhythm. The main difficulty in calculating the 
Pvi is the identification of onsets. It is desirable that 
this task can be performed automatically. 

The activity of identifying musical note onsets has 
been studied widely in the past years. Recently, work 
has been done to improve identifying onsets. 
Gowriprasad and Murty [7] use linear prediction and 
Hilbert envelopes for onset identification. Chen et al. 
[8] present a Convolutional Neural Network (CNN) 
that processes 204 features. Mournir et al. [9] show the 
use of a detection function based on a normalized 
sparsity measure of spectrum magnitude. A detection 
function with an Echo State Network is created by 
Steiner et al. [10]. Tomczak and Hockman [11] 
identifies onsets using CNN and Bidirectional 
Temporal Neuronal Network. Kong et al. [12] suggest 
a regression-based onset identification system. 

In percussive instruments, it is well known that the 
main characteristic of the signals at the moment of an 
onset is a significant increase in the amount of energy, 
Bello [13]. The elements of the previous literature 
show the possibility of identifying onsets and 
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representing rhythmic variability. However, the 
automation of the generation of rhythm descriptors 
from audio signals is an open task. 

In this paper, musical phrases of a drum set 
performance are used to represent the rhythmic base of 
contemporary musical genres in the form of the 
rhythmic descriptors nPvi and rPvi. The Short-Time 
Fourier Transform (STFT) is used to extract spectral 
information from the audio signal and to build an 
energy based detection function. The values from the 
detection function are then used to train a classifier to 
identify onsets. The distances between onsets are the 
raw material for calculating the variability of the 
rhythm in the Pvi. This document is organized as 
follows. Section 1 contains the introduction. Section 2, 
the procedure for the calculation the indexes.  
Section 3, the results and analysis. Section 4, the 
corresponding conclusion. 

 
 

2. Methodology 
 

The computation of the Pvi values require eight 
steps, see Fig. 1. The experimental setup is inspired by 
Stasiak [14]. In the first step (Fig. 1a), recordings 

containing a musical phrase from 6 different musical 
genres, were taken from the Enst-Drums dataset [15]. 
The recordings are in WAV format, with a sampling 
frequency ݂ݏ = 44.1 kHz. In the second step  
(Fig. 1b), the STFT was applied to time domain 
signals, is defined in Eq. (1). 
 ܺ(݊, ݇) = ∑ ݄)ݔ + మೕഏೖಿ	ି݁(݉)ݓ(݉ 	మಿିଵୀିమಿ , (1) 

 
where ݔ(݉) is a point in the input signal, ݓ(݉) is a 
point in window, ܰ  is the window size = 2048, ݄  is the 
hop = 441 y ݇ is the frequency. In the third step  
(Fig. 1c), the spectral flux detection function (ܵܨ) is 
calculated as is shown in Eq. (2). 
(݊)ܨܵ  = ∑ ,݊)ܺ|)ܪ ݇)|– |ܺ(݊– 1, ݇)|)మಿିଵୀିమಿ , (2) 

 
where (ݔ)ܪ = 	ݔ) +	  is half-wave rectifier 2/(|ݔ|
function, |ܪ(݊, ݇)|	is the module of ݇-bin in the 
current frame and |ܪ(݊ − 1, ݇)| is the module of the 
previous frame. 

 
 

 
 
Fig. 1. The eights steps for the generation of the rhythm descriptor in musical phrases. a) Time domain signal. b) Short-time 

Fourier Transformation (STFT). c) Spectral flux detection function. d) Inputs preparation for classifier. e) Onsets 
identification. f) Time distances of onsets. g) Duration of note. h) Computation of rhythm descriptor Pvi. 

 
 

In the fourth step (Fig. 1d), vectors of the shape ܸ݁ = ݊)ܨܵ] − 2), ݊)ܨܵ − 1), ,(݊)ܨܵ ݊)ܨܵ + ݊)ܨܵ,(1 + 2)] were created with data points from the 
detection function, including the current, previous and 
following frames. The different vectors that we extract 
have cardinalities of {5, 7, 9}. An additional value ܵܨതതതത, 
the sum of 10 previous and following frames, has been 
added to others. These new vectors have cardinalities 
of {6, 8, 10}. All the resulting vectors were used as 
inputs to a classifier to determine the presence or 
absence of an onset in ܵ  the current frame. A total ,(݊)ܨ
of 9,039 samples without onsets and 200 with onsets 
were available. Considering the problem of 
unbalanced classes, the class containing samples with 
onsets was oversampled with 2000 additional vectors. 
Such vectors were formed with 1000 copies of the 
existing ones, and 10	% noise was added to the  
other 1000. 

In the fifth step (Fig. 1e), 5 types of classifiers were 
trained and validated in Weka [16] to identify onsets. 
The classifiers that we explore are the well-known 
ones: Bayesian Network (BN), Hoeffding Tree (HT), 

Multilayer perceptron (MP), Decision Table (DT),  
1-Nearest Neighbor (1-NN). We use 10-fold  
cross-validation for testing. In the sixth step (Fig. 1f), 
once the onsets are identified, the temporal distances 
between them are calculated. In the seventh step  
(Fig. 1g), these distances were normalized by taking 
the first distance as the standard. The first distance is 
assigned a value of 1. In the following ones values, the 
value 0.5 indicates that the distance is half of the first 
distance. If the value is 3, means 3 times the distance 
of the first one. The previous representation can be 
interpreted as the duration of the notes. 

In the final step (Fig. 1h), the computation of the 
indexes PVI. The nPvi [3] and rPvi [4] are defined in 
Eqs. (3) and (4). The nPvi are integers in the range of 
0 and 100. While the rPVI are floating-point numbers 
equal to 0 or greater. 
݅ݒܲ݊  = ቀ ଵିଵቁ∑ ቚ ௗೖିௗೖశభ(ௗೖାௗೖశభ)/ଶቚିଵୀଵ ,	 (3) 

 
where ݉ is the number of distances, ݀  is the current 
distance between two onsets and ݀ିଵ is the next. 
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݅ݒܲݎ = ∑ |ௗೖି	ௗೖషభ|	ି	ଵିଵୀଵ   (4) 
 
 

3. Results and Analysis 
 

The files of the musical phrases used for the 
experiment, their duration in seconds (D), and the 
number of onsets (O) are listed in Table 1. Notice that 
the difference in the number of onsets, reveals the 
differences in the rhythmic complexity among  
musical phrases. 

 
 

Table 1. The files of the musical phrases, their duration  
in seconds (D), and the number of onsets(O). 

 
File D O 

036_phrase_disco_simple_slow_sticks  16 41 
042_phrase_rock_simple_slow_rods 20 33 
048_phrase_afro_simple_slow_mallets  10 15 
060_phrase_salsa_simple_slow_sticks 20 45 
066_phrase_shuffle-blues_simple_slow_brushes 14 35 
078_phrase_reggae_simple_slow_sticks 13 31 

 
The performance of the Bayesian network 

classifier is shown in Table 2. The metrics Accuracy 
(Acc), Precision (P), Recall (Rc), F-score (F1) are used 
to present the performance. |ܸ݁|	is the cardinality of 
the input vector. The best result is achieved with the  
9-attribute vectors, with an accuracy of 94.4 %. 

 
 

Table 2. Performance of the BN classifier. 
 Acc P Rc F1 |ࢋࢂ| 

5 0.850 0.901 0.850 0.861 
6 0.840 0.890 0.840 0.852 
7 0.938 0.943 0.938 0.940 
8 0.936 0.943 0.936 0.938 
9 0.944 0.948 0.944 0.945 

10 0.940 0.946 0.941 0.942 
 

The performance of the multilayer perceptron 
classifier is shown in Table 3. The best result is 
achieved with the 6-attribute vectors, with an accuracy 
of 97.6 %. 

 
 

Table 3. Performance of the MP classifier. 
 

|Ve| Acc P Rc F1 
5 0.974 0.991 0.978 0.984 
6 0.976 0.992 0.980 0.986 
7 0.976 0.990 0.980 0.985 
8 0.974 0.989 0.979 0.984 
9 0.975 0.976 0.975 0.976 

10 0.975 0.976 0.975 0.976 
 

The performance of the decision table classifier is 
shown in Table 4. The best result is achieved with the 
8-attribute vectors with an accuracy of 98.1 %. 

The performance of the Hoeffding tree classifier is 
shown in Table 5. The best result is achieved with the 
7-attribute vectors with an accuracy of 97.6 %. 

Table 4. Performance of the DT classifier. 
 

|Ve| Acc P Rc F1 
5 0.966 0.966 0.966 0.966 
6 0.975 0.976 0.976 0.976 
7 0.979 0.980 0.980 0.980 
8 0.981 0.982 0.982 0.982 
9 0.979 0.980 0.980 0.980 

10 0.978 0.978 0.978 0.978 
 
 

Table 5. Performance of the HT classifier. 
 

|Ve| Acc P Rc F1 
5 0.963 0.965 0.964 0.964 
6 0.973 0.974 0.973 0.974 
7 0.976 0.978 0.976 0.977 
8 0.973 0.974 0.974 0.974 
9 0.974 0.976 0.975 0.975 

10 0.975 0.976 0.975 0.975 

 
The performance of the 1-nearest neighbor 

classifier is shown in Table 6. The best result is 
achieved with the 10-attribute vectors with an accuracy 
of 99.2 %. 

 
 

Table 6. Performance of classifier 1-NN classifier. 
 

|Ve| Acc P Rc F1 
5 0.991 0.991 0.991 0.991 
6 0.991 0.992 0.992 0.992 
7 0.991 0.992 0.992 0.992 
8 0.992 0.993 0.992 0.992 
9 0.992 0.993 0.992 0.992 

10 0.992 0.993 0.993 0.993 

 
The best perfomances of each classifier are shown 

in Table 7. The classifier with the best result is 1-NN 
with an accuracy of 99.2 %. 

 
 

Table 7. The best performances of each type of classifiers. 
 
Classifier |Ve| Acc P Rc F1 

BN 9 0.944 0.948 0.944 0.945 
HT 7 0.976 0.978 0.976 0.977 
MP 6 0.976 0.992 0.980 0.986 
DT 8 0.981 0.982 0.982 0.982 

1-NN 10 0.992 0.993 0.993 0.993 

 
Once the onsets in the musical phrases have been 

identified, the computation of the Pvi indexes is 
continued. The temporal distances between onsets for 
the afro genre phase are shown in Fig. 2 as example. 

The previous temporal distances help to compute 
the duration of the notes. The note duration for the afro 
style musical phrase is shown in Fig. 3. 

The values of the nPvi and rPvi of the musical 
phrases are ordered from the lowest to the highest 
variability are shown in Table 8. The rock genre phrase 
has the lowest variability and the afro genre phase has 
the highest variability. 
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Fig. 2. Time distance between the onsets in milliseconds  
for the musical phase of the file 

048_phrase_afro_simple_slow mallets.wav. 
 
 

 
 

Fig. 3. The duration of the notes for the musical phrase  
in the afro style in the file 

048_phrase_afro_simple_allow_mallets.wav. 
 
 

Table 8. The values of the nPvi and rPvi  
of the musical phrases. 

 
File nPvi rPvi 

042_phrase_rock_simple_slow_rods 9.63 0.082 
060_phrase_salsa_simple_slow_sticks 34.98 0.272 
036_phrase_disco_simple_slow_sticks 35.22 0.496 
066_phrase_shuffle-
blues_simple_slow_brushes 

50.64 0.404 

078_phrase_reggae_simple_slow_sticks 57.98 0.410 
048_phrase_afro_simple_slow_mallets 85.76 1.497 

 
 

4. Conclusion 
 

In this paper, the automatic generation of a rhythm 
descriptor (Pvi) is presented for digital music. Signal 
processing and artificial intelligence techniques are 
applied to recordings of musical phrases. High values of 
accuracy, precision, recall and F-score metrics are 
obtained for musical note detection of percussive 
instruments. These high values confirm that the energy 
based detection function highlights the moment when 
there is an onset. This corresponds to the increase in 
energy, which is a characteristic of percussive 
instruments. The nPvi and rPvi values represent the 
irregularity of the rhythm. The descriptors are means 
to perform the tasks of the MIR systems. 
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Summary: This paper introduces a novel approach combining feature selection and hyperparameter optimization using 
Sequential Model-Based Optimization. Addressing the gap in small dataset applications, the method optimizes both features 
and hyperparameters simultaneously, mitigating issues like overfitting and the curse of dimensionality. The combined 
optimization is made feasible since features are treated as hyperparameters with two values: 0 for not selected and 1 for 
selected. In order to model both categorical and numerical hyperparameters, the Tree-structured Parzen Estimator is applied. 
The proposed method is tested on five datasets, demonstrating superior performance compared to traditional hyperparameter 
optimization or feature and model selection approaches. The results show better performance with less computation time. 
 
Keywords: Feature selection, Optimization, Artificial intelligence, Machine learning, Small datasets. 
 

 
1. Introduction 
 

Small datasets are ubiquitous across various 
scientific disciplines, including bioinformatics, 
medicine and finance [1]. Despite their prevalence in 
practical applications, small datasets remain 
significantly underrepresented in the rapidly 
advancing research fields of Machine Learning (ML) 
and Artificial Intelligence (AI). The primary focus of 
ML and AI research has been on large-scale datasets, 
which, while beneficial for advancing algorithmic 
performance, do not reflect the constraints encountered 
in real-world scenarios. This discrepancy has resulted 
in a gap between theoretical advancements in ML and 
their practical deployment in industry settings. 

Another critical issue is the limited focus on feature 
selection in research. Feature selection is essential for 
reducing model complexity, improving 
interpretability, and mitigating the risks associated 
with overfitting in scarce data settings [2]. However, 
most AI research emphasizes model architecture and 
optimization while neglecting the role of feature 
selection, further contributing to the difficulties in 
applying these models in practice. 

To narrow the gap between scientific research and 
the application of ML and AI models in practice, this 
paper proposes a novel approach that combines feature 
selection with hyperparameter tuning using Sequential 
Model Based Optimization (SMBO). This integrated 
framework allows for an end-to-end optimization of 
ML and AI models, enabling them to perform 
effectively for small datasets. By leveraging SMBO 
and optimize hyperparameters and features 
simultaneously, the proposed method addresses key 
challenges such as overfitting and the curse of 
dimensionality. This work aims to provide a practical 
solution that enhances the generalizability and 

applicability of ML and AI models, ultimately 
fostering the adoption of these models in domains 
where data is scarce. 
 
 
2. Related Works 
 

While hyperparameter tuning is well-researched, 
ranging from simple grid searches to elaborated 
SMBO approaches, research in the field of feature 
selection remains comparatively limited. Common 
feature selection methods include filter approaches, 
that evaluate the relevance of features based on 
statistical properties, such as mutual information or 
correlation, without considering the machine learning 
algorithm. and wrapper approaches, evaluate feature 
subsets by training a model and measuring its 
performance, with techniques like Recursive Feature 
Elimination or forward/backward selection [3]. Since 
the combination of multiple filter and wrapper 
approaches with numerous ML or AI models whose 
hyperparameter needs to be tuned results in a 
combinatorically demanding search space, AutoML 
algorithms like AUTO-Weka [4] or Auto-sklearn [5] 
leverage sophisticated optimization algorithms like 
SMBO to find the best combination of feature 
selection, model and hyperparameter set. However, 
both of these AutoML algorithm rely primarily on 
filter or wrapper approaches for the feature selection. 
Filter approaches fail to capture feature interactions. 
Moreover, relying on a measure for the statistical 
property of a feature is error-prone in itself, sensitive 
to the sample size and can struggle with noisy 
relationships [6,7]. Wrapper approaches select features 
based on model performance but are computationally 
expensive and prone to overfitting [3]. 
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3. Theoretical Background for Sequential  
    Model Based Optimization 
 

SMBO includes a group of algorithms to optimize 
the hyperparameters for a given model. Thereby, 
SMBO is not limited to a specific model or a group of 
models but can be used for any model that needs to 
minimize any objective function. The general idea 
behind SMBO algorithms is that they take a  
pre-defined domain of hyperparameters and iteratively 
test them. Since testing multiple sets of 
hyperparameters can be time-consuming for complex 
models, the hyperparameter sets are evaluated on a 
surrogate function which is faster to calculate. The next 
hyperparameter set to test is found by taking into 
account the historic runs and the performance of the 
different hyperparameter values. In a nutshell, SMBO 
algorithms use sophisticated guesses to find the best set 
over a domain of hyperparameters while also reducing 
the run-time. In the following, the concept is explained 
in more detail to present the differences between the 
SMBO algorithms and justify the use of the  
Tree-Parzan Estimator algorithm in this paper. 

All of the SMBO algorithms have 5 common parts: 
(i) a domain of hyperparameters to search over, (ii) an 
objective function that uses the hyperparameters and 
needs to be optimized, (iii) a surrogate function for the 
(cost-expensive) objective model, (iv) a selection 
function to decide on the next set of hyperparameters 
to test and (v) a history of the tested hyperparameters 
and their performance. The domain of 
hyperparameters consists of a probability distribution 
of continuous hyperparameter values and/or a list of 
discrete hyperparameter values. The probability 
distribution for each continuous hyperparameter needs 
to be selected by prior knowledge, which could be a 
source of error. However, the importance of 
hyperparameter search spaces for different ML and AI 
models have been extensively studied and best 
practices have been established. For example, studies 
have empirically proven that the minimum samples per 
leaf and maximal number of features for determining 
the split were the most important hyperparameters for 
Random Forests [8, 9]. 

The objective function is the loss function for the 
applied model. This loss will be optimized during the 
SMBO. Since the goal of this paper is to find the best 
set of input variables and hyperparameters, the 
possible combinations to test are huge und the 
computations are time consuming. Therefore, the 
number of combinations to test will be reduced by only 
calculating the loss function with the most promising 
combinations. 

To find the most promising combinations, a 
surrogate function is built. The surrogate function is a 
probabilistic representation of the loss function given 
the hyperparameters. It maps the hyperparameter 
values to probability of a loss. To create the surrogate 
function and the probabilities, the SMBO algorithm 
needs to be started by some initial runs with random 
hyperparameter values. These values random 
hyperparameter values serve as a basis for the 

surrogate function. All of the surrogate functions use 
the Bayes Rule to model a loss probability ݕ given a 
set of hyperparameters ݔ: 

 

ݔ|ݕ)  ) = (	ݕ|ݔ) ∗ (ݔ)	(	ݕ)	 	  

 
The initial runs with random hyperparameters are 

used to create a prior distribution for (ݔ|ݕ). The 
SMBO algorithms differ in the concrete application of 
Bayes Rule. In this paper, the Tree Parzan Estimator 
(TPE) will be used instead of the more frequently used 
Gaussian Processes. The empirical literature has 
proven that the TPE outperforms other surrogate 
functions such as Gaussian Processes [10, 3]. The TPE 
is also computationally less expensive since it scales 
linearly with the observations whereas the Gaussian 
Process scales cubically. Another distinction to 
Gaussian Processes is, that the TPE is able to handle 
categorical and especially binary variables directly. 
This feature of the TPE is crucial for the feature 
selection process developed in this paper and thus 
motivates the use of the TPE as a surrogate function. 

The TPE creates two probability distribution for 
each hyperparameter: one distribution with 
hyperparameter values that resulted in a low loss (݈(ݔ)) 
and one distribution with hyperparameter values that 
resulted in a high loss (݃(ݔ)). The separatio between a 
low and a high loss is done by a threshold y*. The 
relative frequency of runs performing better than the 
threshold ݕ∗ determines (ݕ). Instead of directly 
modelling (ݔ|ݕ), the TPE uses (ݕ) and (ݕ|ݔ) 
given by: 

 

(ݕ|ݔ)  = ൜ ݕ	݂݅	(ݔ)݈ < ݕ	݂݅	(ݔ)݃∗ݕ ≥  (1) 	∗ݕ

 
The distributions of ݈(ݔ) and ݃(ݔ) are modelled by 

Parzen Kernel Density Estimators on the previous 
runs. Since the Parzen Kernel Density Estimators are 
the linear combination of Gaussian Mixture models, 
they also allow for a combination of categorical and 
continuous parameters. The tree structure mentioned in 
the name of TPE results of the tree-like hierarchy of 
the hyperparameters. This means that the parameters 
can be tuned step-by-step to account for hierarchies in 
the domain space. One example for a hierarchal 
domain space is i.e. if the number of units in each 
hidden layer is tuned individually, then the number of 
units in the third hidden layer only needs to be tuned if 
there exists a third layer. 

On the basis of the surrogate function, the selection 
function finds the next set of hyperparameters to test 
on the loss function. There are different selection 
functions, with the most common choice being the 
Expected Improvement (EI). Combining the EI with 
the TPE yields the following equation: 

(ݔ)∗௬ܫܧ  =	= (ݔ)݈∗ݕߛ − (ݔ)݈  (ݔ)݈ߛ௬∗ିஶݕ݀(ݕ) + (1 − (ݔ)݃(ߛ ߙ ቆߛ + ቇ(ݔ)݈(ݔ)݃ (1 −  ଵ (2)ି(ߛ
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For the derivation, see Bergstra et al. [12]. 
Intuitively, the EI should find the best next 
hyperparameter set to test. This is achieved by 
choosing hyperparameters that are more likely under 
the distribution ݈(ݔ) than under the distribution from ݃(ݔ). This is exaclty what is promoted by Equation (2). 

The EI is higher, the higher the ratio between ቀ(௫)(௫)ቁିଵ 

as can be seen in the last term of Equation (2). In each 
iteration, many hyperparameter candidates are drawn 
from ݈  and evaluated by the EI. The hyperparameter (ݔ)
set that maximizes the EI is chosen to be tested in the 
ML model and the loss function. 

With the next set of hyperparameters that are tested 
on the loss function, the distribution of ݈(ݔ) and ݃(ݔ) 
are updated. This process is repeated until a 
convergence criterion is met, i.e. the maximum number 
of iterations or the loss function has not improved for 
a predefined amount of iterations. 
 
 
4. Methodology for Combined Feature  
    Selection and Hyperparameter  
    Optimization 
 

Motivated by the drawbacks of the existing 
literature, a new algorithm called “Sequential Model 
Based Optimization with Feature Selection and 
Hyperparameter Tuning” (SMOFH) is proposed in this 
paper. This approach is similar to wrapper approaches. 
The difference is that the subset and number of features 
to include is simultaneously optimized with the models 
hyperparameters using SMBO. A schematic 
representation of the algorithm is shown in Fig. 1. 

 

 
 

Fig. 1. Combined Feature Selection and Hyperparameter 
Optimization Approach SMOFH. 

 
A ML or AI model is applied for either a regression 

or classification problem. The hyperparameters of the 
ML model are tuned with the SMBO algorithm 
described above. Up to this point this is common sense 
in applied ML. The new idea is to treat the features as 
0/1 encoded hyperparameters in the SMBO. This 
means if a 0 is assigned to a feature, this feature will 

                                                           
 
1 Nevertheless, the SMOFH algorithm applied to a Long-
Short-Term-Memory Network also outperformed other 
statistical, econometrical and ML models that have been 

not be used in the next iteration. If a 1 is assigned to a 
feature, this feature will be used in the next iteration. 
In each iteration, the algorithm not only finds the next 
best hyperparameter set to test on the loss function but 
also the next best set of features to test. 

This approach is in theory particularly effective, as 
it evaluates each feature independently, 
simultaneously optimizes features and 
hyperparameters. The SMOFH algorithm could 
potentially mitigate the curse of dimensionality posed 
by small datasets for ML and AI models by reducing 
the overall number of features as well as the problem 
of overfitting by only selecting the relevant ones. 
 
 
5. Experiments and Results 
 

To empirically evaluate the proposed 
methodology, it has been tested on five publicly 
available and diverse datasets and one proprietary one. 
The five publicly available datasets are binary or 
multiclass classification problems, whereas the 
proprietary dataset is a regression problem. Due to 
space constraints and the proprietary nature of the 
regression dataset, this paper focuses solely on the 
reproducible experiments and results from the five 
classification datasets.1 
 
 

Table 1. Overview Datasets. 
 

 
Lung 
[11] 

Diabetes 
[12] 

Credit 
[13] 

Heart 
[14] 

Student 
[15] 

Classification
problem 

multi-
class 

binary binary binary binary

Sample 
Size 

27 520 659 1025 4424 

# categorical 
features 

56 15 9 8 19 

# numerical 
features 

0 1 6 51 17 

 
An overview of the five classification datasets is 

given in Table 1. If there have been missing values in 
the dataset, these samples have been excluded for the 
analysis. For each dataset a random test-val-test split 
was applied with the ratio 0.7:0.15:0.15. For each of 
the datasets, the SMOFH has been applied to tune a 
Random Forest (RF) as well as a Multilayer Perceptron 
(MLP) for two scenarios: (1) for the proposed 
combined feature selection and hyperparameter 
optimization approach SMOFH and (2) if only a 
hyperparameter optimization was performed using 
SMBO. The loss function used in the RF and MLP 
training is the log cross entropy loss. The 
hyperparameter search space for the RF is based on 
findings of van Rijn and Hutter [8] that the maximal 
number of features for determining the split were the 
most important hyperparameters for Random Forests, 

tuned and feature selection methods such as Lasso or Ridge 
for a time-series regression problem. 
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whereas the number of trees and the max depth control 
the complexity of the model. For the MLP, the 
hyperparameter search space is based on the finding 
that the learning rate can be considered the single-most 

important hyperparameter whereas the number of 
layers and number of units control the relation 
complexity that the MLP can learn [16]. The 
hyperparameter search space can be seen in Table 2. 

 
 

Table 2. Hyperparameter Search Space. 
 

Hyperparameter Search Space RF 

# Trees Max Depth 
Min Samples 

Leaf 
Min Samples 

Split 
100, 150, 
200, 250, 
300, 350, 
400, 450 

2-20 1, 2, 3, 4, 5 2, 3, 4, 5, 6 

 

Hyperparameter Search Space MLP 
# Units # Layers Learning Rate 

1, 16, 
32, 48, 
64, 80, 
96, 100 

1, 4, 7, 10 
Log-uniform Sampling 
von 2 ∗ 10ି bis 10ିଶ 

 
 

Additionally, the performance of the SMOFH 
algorithm has been compared to the feature and model 
selection approach for both, ensembles and single 
models, integrated in the Auto-sklearn, which has been 
the winning submission to the second ChaLearn 
AutoML challenge [4]. The Auto-sklearn 2.0 
algorithm covers different filter approaches for the 
feature selection, for example filter approaches based 
on variance thresholding and selecting the k-best 
features based on the Mutual Information Criterion, 
Feature Importance or Chi-Square tests as well as 
feature reduction techniques such as Principal 
Component Analysis. Moreover, the Auto-sklearn 2.0 
algorithm covers a variety of state-of-the-art 
classification models, such as tree-based models, linear 
models with integrated feature selection approaches 
such as Ridge or Lasso, Bayesian Models, MLP as well 
as Support Vector Machines and k-nearest Neighbor 
Classifier. Auto-sklearn 2.0 was chosen over  
AUTO-Weka due to its wider adoption and better 
maintenance, improving reproducibility. The 
maximum compute time for the Auto-sklearn 2.0 
algorithm is set to 10 minutes to yield a fair runtime 
comparison to the SMOFH algorithm. 

All experiments were conducted on a Lenovo Yoga 
C740, featuring an Intel Core i7-10510U CPU with  
4 cores and a clock speed of up to 2.3 GHz. The system 
is equipped with 16 GB of DDR4 RAM and a 512 GB 
SSD for storage. The operating system used was 
Windows 11 Pro (version 23H2), with the WSL 
distribution Ubuntu 22.04 LTS and the Linux 5.10.xx 
kernel. The python libraries hyperopt 0.2.7,  
scikit-learn 0.24.2 along with Auto-sklearn 2.00.15.0 
were employed for the computational tasks1. 

To compare the performance, each model 
predictions of the test set are evaluated using the log 
cross entropy loss (log loss), the accuracy as well as 
the Receiver Operating Characteristic Area Under 
Curve (ROCAUC) score. Thereby, the distinct 
advantages of each metric can be incorporated into a 
comprehensive evaluation of the model performance, 
                                                           
 
1 For reproducability reasons, the random seed for the  
train-val-test split in scikit-learn was set to 0. For hyperopt 
and auto-sklearn, all random seeds were set to 1.  

such as favorable characteristics for balanced datasets 
(accuracy), unbalanced datasets (log loss) and 
independence of a specific classification threshold 
(ROCAUC). 

The results for the RF can be found in Table 3. In 
Table 3 only the best RF for the proposed SMOFH and 
the best RF under the traditional SMBO for 
hyperparameter tuning are shown. The best RF are 
selected based on the lowest log loss on the validation 
set. Across the four smallest datasets (Lung, Diabetes, 
Credit, Heart), the proposed SMOFH algorithm 
performs as well or outperforms the traditional SMBO 
approach where only the hyperparameters are tuned as 
well as the ensemble and single model tuned under the 
Auto-sklearn 2.0 algorithm. This is not only true for 
the best optimization iteration, but also in the vast 
majority of cases comparing the 5, 10, 20 or 30 best 
iterations. This underlines the fact that the proposed 
SMOFH algorithm does not lead to one lucky 
configuration that outperforms other models but that a 
combined feature selection and hyperparameter 
optimization leads to overall better results for small 
datasets. For the largest dataset (Student), the proposed 
SMOFH algorithm did outperform the traditional 
SMBO, but not the Auto-sklearn algorithm. 

Moreover, the computation time is shorter for the 
proposed SMOFH algorithm than the other algorithms. 
This is due to the fact that the feature selection 
optimization results in better performances in early 
optimization iterations and no performance increase 
can be made, thus triggering the early stopping 
criterion in fewer iterations. These finding underline 
the importance of integrating a designated, individual 
feature selection into the optimization process of ML 
and AI models. 

Due to the page limit the results for the MLP are 
not explicitly stated. To summarize the findings 
regarding the MLP, the SMOFH algorithm 
consistently outperforms the traditional SMBO 
approach where only the hyperparameters are tuned. 
However, the performance of the MLP tuned with the 
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SMOFH algorithm is inferior to the ensemble and 
single models trained. This is in line with findings in 
the literature that MLP perform worse than ML models 

for small datasets [16]. This has also been shown for 
the lung dataset [12] and the credit dataset [14] used in 
this analysis. 

 
 

Table 3. Algorithm Performance Comparison, bold numbers highlight the best performance within a dataset. 
 

 Algorithm Log loss ROCAUC Accuracy Run time 

Lung 

proposed 
SMOFH 

0.7439 0.8333 0.8000 3:52 

Traditional 
SMBO 

0.9321 0.8333 0.6000 12:48 

Auto-sklearn 
ensemble 

0.7956 0.8889 0.6000 10:00 

Auto-sklearn 
single 0.7305 1.0000 0.6000 10:00 

Diabetes 

proposed 
SMOFH ૢ. ૢૢିࢋ 1.0000 1.0000 2:09 

Traditional 
SMBO 

1.3284 0.9586 0.9615 4:35 

Auto-sklearn 
ensemble 

17.2697 0.4333 0.5000 10:00 

Auto-sklearn 
single 

14.6129 0.5000 0.5769 10:00 

Credit 

proposed 
SMOFH 

4.1866 0.8727 0.8788 4:03 

Traditional 
SMBO 4.1865 0.8705 0.8788 7:22 

Auto-sklearn 
ensemble 

4.5354 4.5354 0.8687 10:00 

Auto-sklearn 
single 

4.8843 4.8843 0.8586 10:00 

Heart 

proposed 
SMOFH 6.0068 0.8207 0.8261 1:24 

Traditional 
SMBO 

7.5085 0.7758 0.7932 1:28 

Auto-sklearn 
ensemble 

6.7577 0.7865 0.8043 10:00 

Auto-sklearn 
single 

7.5085 0.7680 0.7826 10:00 

Student 

proposed 
SMOFH 

5.2537 0.7890 0.8479 14:26 

Traditional 
SMBO 

5.2537 0.7806 0.8479 33:10 

Auto-sklearn 
ensemble 4.3173 0.8308 0.8795 10:00 

Auto-sklearn 
single 

4.7855 0.8224 0.8614 10:00 

 
 
6. Discussion 
 

In the following, potentially imitating factors for 
this study as well as the generalization ability of the 
experiments will be discussed. 

The choice of the hyperparameter search space in 
SMBO could significantly influence the performance 
of the optimization process. In this study, the 
hyperparameter search space was carefully selected 
based on established scientific findings, ensuring that 
even with a limited number of hyperparameters, the 
proposed method was able to outperform benchmark 
models. This demonstrates that an informed selection 
of the search space can lead to an effective and 
efficient optimization process. 

Beyond the search space itself, the performance of 
SMBO is also affected by the settings of its own 
hyperparameters. In this study, we set the maximum 
number of trials to 1000 and the early stopping 
criterion to 150 trials without improvement. 
Interestingly, these settings did not seem to have a 
significant impact on the final performance, as the 
proposed SMOFH algorithm reached a solution that 
outperformed other models well before the 1000 trials 
limit. Additionally, an ablation study was conducted 
by increasing the early stopping criterion to 300 trials 
without improvement. The results showed no 
difference compared to the setting with 150 trials, 
suggesting that an even lower early stopping threshold 
could yield similarly strong results. This indicates that 
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the proposed method is robust and can achieve optimal 
solutions without requiring excessively long 
optimization processes. 

A key advantage of the SMOFH algorithm is its 
capability to provide implicit feature importance. 
Unlike traditional feature importance methods, which 
require separate post-hoc analyses, implicit feature 
importance is derived directly from the optimization 
process. This approach offers several benefits. Since 
feature importance is inferred during the optimization, 
no additional computational steps are required, 
reducing overall runtime. The importance scores are 
inherently aligned with the optimization process, 
ensuring that they reflect the actual contribution of 
each feature to the model's performance. By analyzing 
the frequency and influence of specific features during 
the optimization, researchers can gain insights into 
which features are most relevant for the task, 
potentially guiding further feature engineering efforts. 
Implicit feature importance is less prone to biases 
introduced by separate importance estimation 
methods, as it is integrated into the optimization 
framework itself. 

While there is no unequivocally definition for small 
datasets in the ML or AI research, a literature review 
from Rather et al. in 2024 found that for the majority 
of studies, datasets with less than 3000 samples per 
class are defined as small datasets [17]. With this rule 
of thumb, the four smallest datasets (Lung, Diabetes, 
Credit, Heart) in this study can be classified as small. 
For these datasets, the proposed SMOFH algorithm 
was able to outperform all other benchmark models, 
including the ones trained via the Auto-sklearn 2.0 
algorithm. The largest dataset examined in this study, 
the student dataset, has 3003 instances in the class 
“Graduated” and 1421 instances in the class 
“Dropout”. While Rather et al. found that a minority of 
papers also label datasets with more than 3000 samples 
per class as small [17], the SMOFH algorithm was not 
able to outperform the models trained with the  
Auto-sklearn 2.0 algorithm. While the RF trained with 
SMOFH did not outperform the models from the  
Auto-sklearn 2.0 algorithm, there are several potential 
explanations for this result. One possible reason is that 
the RF suffers from overfitting. For all metrics, the RF 
shows significantly better results on the validation set 
than on the test set. When comparing the metrics 
achieved by the RF optimized with the proposed 
SMOFH algorithm on the validation data, it actually 
outperformed the Auto-sklearn 2.0 algorithm on the 
test data, indicating a potential discrepancy between 
training and testing phases. This could point to a 
peculiarity in the train-validation-test split or a specific 
characteristic of the student dataset that influenced the 
model's performance. 

However, even with datasets with slightly more 
than 3000 samples per class, the presented SMOFH 
algorithm was able to outperform traditional SMBO 
approaches for hyperparameter tuning. This suggests 
that the combined feature selection and 
hyperparameter optimization process used by SMOFH 
could have significant benefits for larger datasets as 

well, making it potentially valuable for optimizing 
deep learning models on larger, more  
complex datasets. 

In light of these observations, further research and 
empirical experiments are needed to explore the 
importance and effectiveness of combined feature 
selection and hyperparameter optimization on larger 
datasets. Specifically, it would be valuable to 
investigate whether the benefits demonstrated on 
smaller datasets hold when applied to more complex 
problems or whether the advantages of SMOFH are 
more pronounced for certain types of datasets or 
machine learning models. Such research would be 
crucial in understanding the broader applicability of 
SMOFH and its potential impact on optimizing 
machine learning models for a wide range of 
applications. 
 
 
7. Conclusion 
 

In conclusion, the proposed SMOFH algorithm 
demonstrates significant improvements in model 
performance, particularly in small dataset scenarios. 
By simultaneously optimizing the hyperparameters 
and the individual feature selection, the method 
outperforms traditional hyperparameter optimization 
techniques and AutoML algorithms while also 
reducing computational costs. Empirical results across 
various classification datasets highlight the SMOFH 
algorithm’s ability to deliver robust performance in 
resource-constrained environments. These findings 
highlight the practical applicability of SMOFH in 
domains such as bioinformatics, medicine, and 
finance, where small datasets are common. 

Future research should focus on expanding the 
SMOFH approach to larger, more complex datasets, 
and explore its potential for optimizing deep learning 
models, offering broader insights into its applicability. 
Further studies on the integration of feature selection 
with advanced optimization techniques could lead to 
enhanced AutoML systems with even better 
performance and efficiency. Therefore, more empirical 
evidence is needed to give empirical insights for the, 
choice of ML and AI models, the predefined 
hyperparameter space, the maximum number of 
optimization iterations and the early stopping criterion. 
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Summary: This paper introduces Res-Scrum (Residual Scrum), a proactive and resilient Agile framework that strengthens 
Scrum by integrating residuality principles. Res-Scrum introduces key elements – residual sprint, residual backlog, residual 
controller, and residual retrospective – which expand Scrum’s capabilities by adding adaptivity, proactivity, and resilience-
oriented components. These elements empower development teams to anticipate and manage unexpected challenges and 
uncertainties throughout the software development lifecycle. By embedding residuality into sprints, backlogs, and 
retrospectives, Res-Scrum reinforces Scrum’s capacity to withstand uncertainty, stressors, and challenges. This layered 
approach establishes a forward-thinking methodology that enables teams to build systems that are both adaptive and resilient 
to emerging complexities. A case study showcases its effectiveness in developing a resilient smart home automation app with 
proactive risk management. 
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1. Introduction and Related Work 
 

In the evolving field of software engineering, 
agility and adaptability are crucial for managing 
complexity and uncertainty. Scrum, a widely adopted 
Agile framework, structures iterative development 
through roles, events, and artifacts, promoting close 
collaboration. However, despite its strengths, Scrum 
often struggles with unexpected disruptions and 
uncertainties, which can threaten project outcomes. 

To address these challenges, we introduce  
Res-Scrum (Residual Scrum), the first framework to 
integrate Residuality Theory into Scrum, enhancing its 
resilience and adaptability. Res-Scrum focuses on  
presimulating potential stressors and uncertainties 
throughout the software development lifecycle, 
allowing teams to respond adaptively to unforeseen 
challenges. Unlike predictive approaches, Res-Scrum 
uncovers emergent stable behaviors (attractors) instead 
of relying on exhaustive scenario planning. 

The framework introduces a dual-sprint system 
with regular and residual backlogs, ensuring both 
planned tasks and unforeseen complexities are 
effectively managed. Res-Scrum also incorporates 
residual retrospectives to address unresolved 
challenges and a residual controller role to oversee 
stressor mitigation. By embedding residuality 
principles into Scrum, Res-Scrum strengthens the 
framework’s ability to navigate unpredictable 
environments while maintaining the core agile values 
of collaboration, flexibility, and continuous 
improvement. 

 
1.1. Agile, Scrum and Uncertainty 

 
Agile and Scrum [1, 16-19] are well-studied in 

software engineering, particularly for their impact on 

team collaboration, efficiency, and adaptability within 
the Software Development Life Cycle (SDLC). While 
Scrum embraces uncertainty through iterative 
development, managing unpredictability remains 
challenging due to evolving requirements and dynamic 
stakeholder expectations This paper explores the core 
principles of Res-Scrum and demonstrates its potential 
to enhance the resilience and sustainability of software 
development practices in dynamic and. complex 
environments. 

Research on Agile and Scrum covers areas such as 
team effectiveness, resilience, and large scale 
implementations. Five key factors influencing Scrum 
team performance, including responsiveness and 
stakeholder engagement have been studied in [2, 6]. A 
resilience-based agility model for navigating 
disruptions has been proposed in [5]. Other studies 
compare Agile with traditional project management 
and examine Scrum in safety-critical systems  
[7, 8, 11, 16-18]. Architectural uncertainty, 
particularly in design decisions, has received limited 
focus. Literature reviews [1, 3] emphasize adaptive 
design strategies to handle uncertainty in software 
architecture. While Scrum’s iterative nature helps 
manage uncertainty, major disruptions still present 
challenges [3, 4, 7-9, 11]. 
 
1.2. Residuality Theory and Its Role in Scrum 
 

Residuality Theory, introduced by O’Reilly and 
others [5, 9, 12, 13], addresses persistent uncertainties 
in complex systems. Unlike traditional approaches that 
eliminate uncertainty, Residuality Theory focuses on 
pre-simulating challenges and designing systems to 
stressors. This aligns with Agile and Scrum’s core 
principles of adaptability and responsiveness. Despite 
its strengths, Scrum struggles with systemic 
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uncertainties. While effective for sprint-level 
adjustments, it lacks mechanisms for proactively 
managing long-term disruptions. Integrating 
residuality principles into Scrum could enhance its 
resilience, improving adaptability in dynamic 
environments. 

This paper is structured as follows: Section 2 
highlights the core principles of Res-Scrum in software 
development and the importance of Residuality Theory 
in managing uncertainty. Section 3 introduces  
Res-Scrum, explaining how it integrates residuality by 
redefining roles, events, and artifacts to enhance 
resilience. Section 4 details the residual controller, a 
key role for managing complexity and 
unpredictability. Section 5 outlines Res-Scrum’s core 
principles, reinforcing Scrum’s adaptability. Section 6 
provides guidelines for integrating regular and residual 
concepts into Agile practices. Section 7 provides some 
insights into implementing Res-scrum in Agile. 
Section 8 concludes with key insights on Res-Scrum’s 
impact. Due to space constraints, the full details of the 
case study are available upon request from the author. 
 
 
2. Core Principles of Res-Scrum 
 

Res-Scrum builds on traditional Scrum values 
while incorporating residuality to enhance resilience 
and adaptability. It adds a layer for managing 
uncertainties, allowing teams to anticipate and prepare 
for disruptions rather than react to them. Residuality 
doesn’t predict or control future changes but identifies 
stable system patterns using stressor simulations to 
uncover hidden relationships. It embraces 
unpredictability, focusing on the system’s inherent 
behavior rather than trying to define a rigid 
architecture. Key principles include: 
 
 
2.1. Proactive Anticipation 
 

Res-Scrum encourages teams to foresee disruptions 
and prepare contingency plans, allowing them to 
address challenges early, ensuring smooth project 
progression and reducing the need for urgent 
adjustments. 
 
 
2.2. Residual Resilience 
 

Res-Scrum builds resilience by ensuring teams and 
systems can withstand and adapt to unforeseen 
disruptions, maintaining stability and quality through 
challenges. This principle ensures that systems remain 
functional and effective even in uncertain  
environments. 

 
2.3. Residual Antifragility 
 

Inspired by Taleb’s antifragility [9, 14], Res-Scrum 
enables systems not only to survive disruptions but to 
thrive and improve because of them. Unlike resilient 

systems that endure, antifragile systems grow stronger 
through uncertainty. Every sprint in Res-Scrum is a 
chance to learn and evolve, with stressors serving as 
opportunities for growth. 
 
 
3. Residuality in Scrum: Adapting Roles  
    for Resilience and Agility 
 

Res-Scrum refines scrum roles to improve 
resilience, manage disruptions, and adapt to evolving 
needs. It introduces the residual product owner, 
residual sprints, residual backlog, and residual 
controller while adapting events and artifacts for 
proactive risk management. The product owner 
anticipates disruptions, the scrum master fosters 
adaptability, and the development team builds resilient 
solutions. The residual controller oversees stressors 
and adjusts priorities. Together, these roles ensure 
robust, adaptable project outcomes. 
 
 
3.1. Residual Sprints vs. Regular Sprints:  
       A Dual-Layered Framework 
 

In Res-Scrum, regular and residual sprints serve 
distinct yet complementary roles. Regular sprints on 
delivering product increments – new features and 
improvements – guided by the product backlog in a 
standard 1-4 week cycle. Residual sprints, typically  
1-2 weeks long, address risks, technical debt, and 
unresolved challenges that impact long-term success. 
Driven by the residual backlog, they tackle 
architectural issues, manage complexities, and 
enhance adaptability without disrupting primary 
development. Fig. 1, and Fig. 2 illustrate the 
distinction: one showing a standard product backlog 
with regular sprints, the other highlighting a residual 
backlog with residual sprints. By balancing immediate 
progress with proactive risk management, Res-Scrum 
ensures both stability and long-term resilience. 

Fig. 1 and Fig. 2 compare the product backlog and 
residual backlog, showing the management of regular 
and residual sprints with integrated residuality in the 
scrum master role. 

 

 
 

Fig. 1. Scrum framework. 
 

 
3.2. Residuality Backlogs vs. Product Backlogs 
 

A residual backlog focuses on risks, unresolved 
complexities, and future uncertainties, the product 
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backlog, which prioritizes immediate tasks. By 
addressing long-term resilience, it helps teams 
proactively manage challenges. Fig. 1 and Fig. 2 
illustrate the product backlog with regular sprints in 
Scrum and the residual backlog with residual sprints in 
Res-Scrum. 

 

 
 

Fig. 2. Res-Scrum framework. 
 

 
3.3. Scrum Master and Residuality 
 

Residuality integrates seamlessly into the Scrum 
Master role, eliminating the need for a separate 
position. This expanded role includes proactive risk 
management, guiding the team through uncertainties 
while maintaining resilience. By combining regular 
and residual responsibilities, the Scrum Master ensures 
productivity, adaptability, and risk awareness without 
added complexity (see Fig. 3). 
 

 
 

Fig. 3. Combined Roles and Responsibilities  
of Scrum Master. 

 
 
3.4. Residual vs. Regular Retrospectives 
 

Regular retrospectives refine workflows by 
evaluating past sprints, while residual retrospectives 
assess how well the team anticipates and manages 
stressors. As shown in Fig. 4, this dual approach 
balances immediate improvements with long-term 
resilience in Res-Scrum. Similar to the duality of 
sprints and backlogs illustrated in Fig. 1, we divided 
scrum retrospectives into two categories, as shown in 
Fig. 4, regular retrospectives, which align with 
traditional Scrum practices, and residual 
retrospectives, a distinctive feature of Res-Scrum that 
focuses on addressing residual complexities and 
unresolved issues 
 
3.5. Product Owner and Residuality 
 

The product owner retains almost all traditional 
responsibilities while incorporating risk management, 

disruption anticipation, and alignment with evolving 
client needs. This integrated approach balances 
immediate priorities with long-term resilience, 
ensuring adaptability without adding complexity. 
 
 
3.6. Enhanced Events and Artifacts 
 

Res-Scrum extends Scrum to address stressors, 
uncertainties, and risks while main- training 
adaptability. Events like daily stand-ups and sprint 
reviews now emphasize resilience, and artifacts such 
as backlogs prioritize risk mitigation. By embedding 
residuality, Res-Scrum helps teams anticipate 
challenges, sustain progress in uncertainty, and 
balance Agile practices with proactive risk 
management. 

 

 
 

Fig. 4. Res-Scrum Residual Retrospective vs. Scrum 
Regular Retrospective. 

 
 
4. Residual Controller Management 
 

The residual controller is a key role in managing 
complexities and uncertainties within iterative 
development. Acting as a stabilizing force, it oversees 
residual components, implements stressor mitigation 
strategies during sprints, and monitors the residual 
backlog for potential risks. In collaboration with the 
scrum naster and development team, the residual 
controller prioritizes resilience tasks, ensuring the 
team remains adaptable and prepared for unforeseen 
challenges. The diagram below illustrates the residual 
controller’s connections with other roles and project 
components. Fig. 5 shows the cycle of residual scrum 
interactions. 

 

 
 

Fig. 5. Cycle of Residual Scrum Interaction. 
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5. Integrating Regular and Residual Agile  
    Practices 
 

The following set of sections provide clear 
guidelines for integrating regular and residual concepts 
within Agile practices, ensuring teams address both 
immediate delivery needs and long-term system 
resilience effectively. 
 
 
5.1. Comparison of Regular and Residual Sprints 
 

Dividing sprints into regular and residual sprints 
aligns with Residuality Theory, providing a structured 
approach to feature development while addressing 
accumulated complexities and risks. Below are 
suggestions for optimizing this framework. 

Regular Sprints: 
• Objective: Develop and deliver new features 

aligned with the product backlog; 
• Priority: Focus on user stories that directly 

contribute to product goals; 
• Ceremonies: Follow standard Scrum practices 

(e.g., planning, stand-ups, retrospectives). 
Residual Sprints: 

• Objective: Resolve complexities, reduce 
technical debt, and address risks; 

• Pre-Simulation: Anticipate stressors and assess 
residual complexities; 

• Priority: Tackle items from the "Residual 
Backlog" (deferred or flagged tasks); 

• Residuals: Identify risks, unresolved issues, and 
technical debt; 

• Risk and Lessons: Improve architecture, resolve 
technical debt, and integrate lessons into  
future sprints. 

 
 
5.2. Structuring Backlogs for Sustainable  
       Development 
 

Separating backlogs into regular and residual types 
helps teams balance feature delivery with system 
resilience. This approach manages technical debt and 
risks without disrupting development while 
simplifying tracking and prioritization of immediate 
needs versus long-term stability. 

Regular Backlog: 
• Objective: Focuses on features, user stories, and 

tasks aligned with product goals, prioritizing 
customer-driven enhancements; 

• Ownership: Managed by the Product Owner with 
input from the development team. 

Residual Backlog: 
• Objective: Ensures system resilience by tracking 

unresolved issues, technical debt, and non-feature 
tasks from regular sprints; 

• Ownership: Overseen by the residual controller, 
working with the scrum master and development 
team to address risks and maintain long-term 
adaptability. 

5.3. Regular vs. Residual Retrospectives 
 

Regular retrospectives focus on overall team 
feedback, while residual retrospectives target specific 
areas like delivery processes or risk management. 
Adjusting metrics for each type helps track progress 
more effectively and drives continuous improvement. 

Regular Retrospectives: 
• Objective: Develop and deliver new features 

aligned with the product backlog; 
• Focus on overall sprint feedback, team 

collaboration, and process improvements for 
feature development; 

• Ownership: Led by the scrum team, including the 
scrum master and product owner. 

Residual Retrospectives: 
• Assess residual management, including risks, 

technical debt, and complexities, by analyzing 
pre-simulation results and mitigation strategies; 

• Ownership: Managed by the residual controller 
and team members, ensuring effective risk 
tracking and long-term resilience. 

 
 
6. Managing Dual Sprints: A Guide to Agile  
    Coordination 
 

This section provides strategies for synchronizing 
dual sprints in Agile, ensuring smooth workflows, 
collaboration, and reduced technical debt from  
short-term delivery trade-offs. 

Residual Backing: 
• Keep a separate residual backlog for technical 

debt, risks, and unresolved tasks; 
• Prioritize based on impact, risk, and  

project goals; 
• Review items during each sprint planning 

session. 
Residual Sprint Scheduling: 

• Alternate between regular and residual sprints 
(e.g., three regular sprints followed by  
one residual); 

• Use residual sprints as needed when residuals 
reach specific thresholds. 

Residual Sprint Planning: 
• The scrum master (or residual master)  

leads planning; 
• Analyze root causes, assign mitigation tasks, and 

set goals for testing or refinement. 
Metrics for Residual Sprints: 

• Residual burn-down: Track resolved  
residual issues; 

• Risk Mitigation Score: Measure the reduction  
of risks; 

• Technical Debt Reduction: Assess improvements 
in code quality; 

• Retrospectives: Focus on the impact of residual 
work on project resilience. 
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7. Implementing Res-Scrum in Agile  
    Workflows 
 

Res-Scrum integrates residual sprints for stressors 
and regular sprints for progress, with retrospectives 
balancing immediate and long-term strategies for 
resilience and risk management. 

Backlog Management: 
• Cross-Link Backlogs: Connect regular and 

residual items (e.g., a feature backlog item may 
generate a residual task like refactoring); 

• Prioritization: Rank residual items by impact  
and urgency; 

• Regular Reviews: Align both backlogs with 
project goals during sprint planning. 

Retrospective Enhancements: 
• Focused Discussions: Regular retrospectives 

address delivery and efficiency; residual 
retrospectives analyze risks and mitigation; 

• Analytical Tools: Use fishbone diagrams or  
5 Whys for root cause analysis; encourage 
brainstorming for pre-simulation improvements. 

Integration across Sprints: 
• Regular sprints: Drive feature development and 

process optimization; 
• Residual sprints: Strengthen system resilience 

and reduce technical debt; 
• Visibility and Communication: Share residual 

sprint outcomes with stakeholders; 
• Continuous Adaptation: Periodically review and 

refine the dual-sprint framework for  
optimal balance. 

 
 
8. Conclusion 
 

This paper introduces Res-Scrum, an enhanced 
Scrum framework that integrates residuality to boost 
resilience and adaptability in software development. 
By redefining roles, events, and artifacts – such as the 
residual product owner, sprints, and controller –  
Res-Scrum helps teams proactively manage 
uncertainties. It extends scrum’s iterative approach 
with residual components to anticipate disruptions and 
maintain flexibility. 

Balancing regular and residual practices enables 
teams to meet immediate delivery needs while 
ensuring long-term resilience. A smart home 
automation case study illustrates how Res-Scrum 
fosters adaptability and effective management of 
planned and unforeseen requirements. The structured 
division of backlogs, retrospectives, and sprint reviews 
sharpens focus, systematically integrating risk and 
resilience into Agile workflows. 

However, implementing Res-Scrum presents 
challenges. Overlapping priorities between backlogs 
can create confusion, but clear categorization 
guidelines ensure that tasks improving functionality 
belong in the regular backlog, while those reducing 
future risks or enhancing resilience go into the residual 
backlog. 
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Summary: Large Language Models (LLMs) have demonstrated good performance in various software engineering tasks, 
including code summarization - explaining what a code snippet does. In this paper, we argue that the readability of the input 
code is crucial to how well the LLM will be able to explain it: a readable code has a higher chance of being correctly explained. 
We show that metrics that estimate code readability correlate with the ability of LLMs to explain what the code does and can 
also be used to predict how well the LLM will do. We analyse the human-interpretable readability features used for the 
prediction to characterize the code snippets that can be explained well. We demonstrate the connection between code 
readability and explainability on one of the most widely acknowledged code explanation benchmarks, HumanEvalExplain, 
and across six different open LLMs. 
 
Keywords: Large language models, Code explanation, Code summarization, Code readability. 
 

 
1. Introduction 
 

Recently, large language models (LLMs) have 
achieved remarkable results in software engineering-
related tasks [1-7], with some specifically designed for 
this domain [8-15]. While code generation (e.g. 
HumanEval [16], APPS [17], MBPP [18]) and bug 
fixing (e.g. QuixBugs [19], HumanEvalFix [20]) are 
among the most popular software engineering 
benchmark tasks for LLMs, there has also been some 
work on code summarization, where the model has to 
explain what the code does (e.g. CodeXGLUE [21], 
HumanEvalExplain [20]). It is worth noting that results 
on such benchmarks are not usually used for 
comparing or ranking LLMs. 

While many LLMs exhibit remarkable results in 
software engineering tasks, what exactly happens 
inside them, and whether they truly comprehend their 
inputs, remains an open question. It has been 
hypothesized for example, that certain code properties 
are not encoded by LLMs, which might cause 
generating erroneous code [22]. Others have explored 
the limitations of code analysis performed by LLMs, 
pointing to potential problems with their understanding 
of dynamic behaviours [23]. Furthermore, it has been 
suggested that as code becomes more complex (i.e. 
using nested constructs, complicated loops, or 
nontrivial operators), it challenges the reasoning 
ability of LLMs [24]. 

An interesting and less examined question is 
looking at the problem from the other angle: instead of 
trying to characterize how and which LLMs can solve 
the problem of code summarization, we can try to 
characterize the kind of code that is explainable 
(summarizable) by LLMs and the kind of code  
that isn’t. 

To investigate this problem, we turn to the concept 
of code readability [25, 26]. The readability of code 
refers to the clarity and ease with which a human can 
interpret its meaning and logic. Readability can be 
influenced by factors such as code structure, identifier 
names, or code complexity, but it can be subjective and 
can vary from developer to developer. Estimating 
source code readability has long been an interesting 
field of research with many methods proposed [25-34]. 

We hypothesize that a connection exists between 
code readability and explainability. This is evidently 
the case for humans: a more readable code is generally 
easier to comprehend and explain. We suggest that this 
principle applies similarly to the code explanation 
capability of LLMs: LLMs should explain readable 
code snippets better than less readable ones. 

In this paper, we try to characterize the kind of 
programs that can be summarized well (are 
explainable) by LLMs using code readability measures 
and features. First, we examine the correlation between 
code readability and explainability using the 
readability metric proposed by Posnett et al. [26]. 
Next, we use the human-interpretable features of two 
readability metrics [25, 26] to build classifiers that 
predict how well LLMs will be able to summarize a 
code snippet. We obtain our results on the most widely 
used code explanation benchmark, 
HumanEvalExplain. The results are consistent across 
six currently popular open LLMs. 

Our contributions are as follows: 
• We show that significant correlation exists 

between code readability and the ability of LLMs 
to summarize code; 

• We build human-interpretable classifiers that can 
predict whether a code will be correctly 
summarized by an LLM; 
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• We analyse the obtained classifiers and extract 
the features that determine the explainability of 
code snippets. 

 
 
2. Related Work 
 

Now we turn to works related to investigating the 
code comprehension abilities of LLMs. Also, as we 
believe that program readability correlates with 
whether the program can be well summarized by 
LLMs, we provide an overview of proposed code 
readability metrics. 
 
2.1. Code Comprehension Ability of LLMs 
 

Anand et al. [22] investigated attention maps and 
hidden representations of LLMs. They conducted their 
study on 3000 randomly sampled Python programs 
from the CodeSearchNet dataset [35]. The used models 
include encoder-only (CodeBERT [36], 
GraphCodeBERT [37]), encoder-decoder (CodeT5 
[38], PLBART [39], CodeT5+ [40]) and decoder-only 
(CodeGen [41]) models. Their analysis revealed that 
LLMs struggle to encode relations between syntactic 
and identifier tokens, restricting their ability to 
comprehend program flow and logic. They also 
observed that fine-tuned and larger models encode 
these relations more poorly compared to smaller pre-
trained models. Their findings show that fine-tuned 
and larger models rely on shortcut learning and 
memorize code instead of code comprehension. 

Ma et al. [23] categorized LLM code analysis 
capabilities into syntax understanding, static behaviour 
understanding, and dynamic behaviour understanding. 
Their study showed that while LLMs handle syntax 
and static analysis relatively well, they struggle with 
dynamic behaviours, such as reasoning about test 
flakiness and equivalent mutant detection. 

Sun et al. [32] examined LLMs' performance in 
generating code summaries across different 
programming paradigms. They found that LLMs 
perform worse on logic programming languages (e.g., 
Prolog) compared to procedural and object-oriented 
languages, suggesting that underlying language 
structure affects explainability. 

Liu et al. [24] introduced CodeMind to evaluate 
LLMs' reasoning abilities, showing that performance 
declines as code complexity increases. LLMs 
particularly struggle with nested constructs, complex 
conditions, and API invocations, indicating that high 
complexity hinders their ability to reason about 
execution. 

This suggests that as code complexity increases, 
LLMs face significant challenges in reasoning about 
code execution. 
 
2.2. Estimating Code Readability 
 

There have been many attempts to estimate code 
readability, some of which purely rely on syntactic or 

visual code features, while others use deep learning-
based approaches. 

Buse et al. train readability classifiers [25] based on 
judgments of 120 human annotators, who have 
annotated 100 code snippets. Based on the feedback of 
annotators, they suggest 25 local code features that 
correlate with code readability, such as length of 
identifiers or number of blank lines. Posnett et al. 
propose a simpler model of code readability [26], 
improving on the metric of Buse et al. They focus on 
three structural features: number of lines, entropy, and 
Halstead’s Volume. The readability score is 
determined by combining these features. Compared to 
Buse et al.’s data [25], this model more closely 
correlates with human judgments. 

Dorn et al. present a generalizable formal model of 
software readability [28], based on a study of  
5000 participants. Their approach analyses visual, 
spatial, and linguistic features, such as structural 
patterns, code block sizes, and identifier content, 
across Java, Python, and CUDA. Human annotators 
evaluate readability on programs up to 50 lines long. 
Similarly, Scalabrino et al. [29,30] emphasize the 
importance of both syntactic and textual aspects of 
source code readability. They propose features like 
comment and identifier consistency, textual coherence, 
and the number of meanings and concepts. Their 
model is validated on Java, Python, and CUDA as well. 

Mi et al. propose IncepCRM [31], a deep  
learning-based model for classifying code as readable 
or unreadable using convolutional operators and 
auxiliary annotator inputs. Later, they introduce a 
hybrid neural network [32] combining BERT, CNN, 
and BiLSTM to extract readability features from RGB 
matrices (visual), token sequences (semantic), and 
character matrices (structural). Hu et al. [33] extend 
this line of research to code maintainability with 
DeepM, a recurrent model using LSTM, tree-LSTM, 
and attention mechanism. They categorize programs 
from GitHub as high or low quality based on metrics 
like stars and contributor activity. The categorized 
programs are then used as training data for DeepM. 
 
 
3. Method 
 

In this Section, we describe the dataset, the 
readability metrics, the LLMs, how we measure 
correlation between readability and explainability, and 
how we predict explainability from readability using 
human-interpretable features. 
 
3.1. Dataset 
 

We use the HumanEvalExplain benchmark dataset 
[20], which is probably the most acknowledged 
benchmark for code summarization by LLMs. It is one 
of the benchmarks in HumanEvalPack, which contains 
variants of the HumanEval code generation 
benchmark. 

The benchmark contains 164 programs. Each 
program is relatively short and designed to solve a 
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commonly encountered programming task, such as 
determining if a number is prime. 

Models are evaluated as follows. The evaluated 
model first generates an explanation of the code, then 
tries to reconstruct the original code based on its 
explanation. Each reconstructed code is validated 
using test cases. The outcome of this validation process 
is binary for each input: a pass@1 score of 1 indicates 
that the explanation resulted in a successful code 
generation, while a score of 0 denotes failure due to 
inaccurate explanation or incorrect code 
reconstruction. 
 
3.2. Code Readability Metrics 
 

For evaluating code readability, we implement the 
readability metrics proposed by Buse et al. and Posnett 
et al. [25, 26]. Both metrics estimate the readability of 
a code snippet using extracted features. Buse et al. 
determined 25 such features which they deemed 
important for code readability. Most of these features 
are calculated either as an average value per line or 
maximum value in any one line. We obtain the values 
for these features from a code snippet either by using a 
tokenizer and processing the code as a set of tokens or 
extract the features directly from the code, in which 
case it is processed as a string. In addition to features 
such as line length in characters, number of keywords 
or number of loops, there are two features which 
calculate the occurrences of a character or an identifier 
and return the most frequent one’s frequency. 

In Python, code can be indented using either spaces 
or tab characters. In our implementation, we count 
each space as one unit and each tab as four units. 

Posnett et al. propose a simpler model of code 
readability, relying on three structural code features: 
number of lines, code entropy, and Halstead’s  
Volume metric. 
 
3.3. Large Language Models 
 

We use six open and instruction-tuned models for 
our evaluations, with model sizes ranging from 1.5B to 
70B parameters. The evaluated models are  
Qwen2.5-Coder (1.5B), Llama-3.2 (3B), 
DeepSeekCoder (6.7B), Codestral (22B), Mixtral 
(8×7B), and Llama-3.3 (70B). Half of these models are 
general-purpose LLMs, while the other half are 
specialized LLMs designed to function as coding 
assistants. We ran the HumanEvalExplain benchmark 
on these models with fp16 precision in a pass@1 
setting with greedy decoding (no sampling) for 
generating both the explanation and code. The results 
can be seen in Table 2. 
 
 
3.4. Correlation between Readability  
       and explainability 
 

In order to measure correlation between code 
readability and explainability, we first divide the 
programs of the benchmark dataset into two groups 

based on these scores. Evidently, this grouping will be 
different for each evaluated model. 

We use the readability model proposed by Posnett 
et al. The readability score is computed for each 
program, so the distributions of scores between the two 
groups (successful and failed explanation) can be 
compared. We compare these using boxplots, point-
biserial correlation, and Mann-Whitney U-tests. These 
comparisons are repeated for each LLM. 
 
3.5. Predicting Explainability from Code  
       Readability Features 
 

Estimators of code readability scores are usually 
classifiers or regressors working with certain sets of 
features extracted from code. The readability score 
could be, for example, the probability assigned by 
logistic regression [25]. Instead of using the entire 
code readability metric and measuring its correlation 
with the explainability of code, we can directly use the 
readability features to predict how well LLMs can 
explain a code snippet. 

We are using two sets of features: in addition to the 
features of the Posnett readability metric, we’re also 
using the features of Buse et al. [25]. Although the 
readability metric of Posnett et al. is more recent and 
achieves better results, the features of Buse et al. are 
more numerous and interesting from an interpretability 
standpoint. We compute these features for each 
program in the HumanEvalExplain dataset and use 
them in our classifiers. The targets are the 
explainability scores (0 or 1 for each program). 

As the explainability of a code snippet is binary in 
benchmark datasets (it was either correctly explained 
or not), our prediction task will be binary 
classification. We have chosen two classifiers where 
the importance of individual features to the 
classification decision is easy to determine: logistic 
regression and random forest. We can also contrast the 
simple model (logistic regression), and the complex 
one (random forest). 

To compensate for the small size of the dataset, we 
use K-fold cross-validation with K = 100. Since we 
consider six LLMs, two sets of readability features, 
and 100 folds, we train 6 · 2 · 100 = 1200 classifiers of 
both logistic regression and random forest. 
 
 
4. Results 
 

We first present our results about the correlation 
between readability and code explainability. Then we 
train classifiers to predict explainability directly from 
the features of code readability and perform feature 
analysis on the trained classifiers. We investigate 
results across the six open LLMs. 
 
4.1. Correlation between Readability  
       and Explainability 
 

We split the dataset into two groups according to 
whether the summarization was successful or not, then 
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we analyse the readability scores of these groups. So, 
we obtain two distributions of readability scores 
(successful, failed) and compare them. Fig. 1 shows the 
boxplots of these distributions across the six LLMs. 
We also include the exact values of the medians (and 
the means) in Table 1. 
 

 

 

 
 

Fig. 1. Boxplots that visualize the readability scores  
of programs in the HumanEvalExplain dataset.  
The programs are categorized into sets of programs  
with successful and failed summarizations. 

 
To get a clearer and more detailed picture, we 

perform kernel density estimation (KDE). This offers 
a smoothened visualization of the probability 
distributions of readability scores of the two groups 
(Fig. 2). 

 

 

 

 
 

Fig. 2. Kernel density estimation (KDE) plots depicting  
the distribution of readability scores for programs classified 
as having successful and failed summarization,  
for each evaluated LLM. 

 
Beyond visualization, we use statistical testing to 

evaluate the relationship between readability and 
explainability. We conduct Mann-Whitney U-tests to 
compare the distributions of readability scores between 

successful and failed summarization groups. The 
resulting p-values can be seen in Table 2. 

To quantify the relationship further, we calculate 
the point-biserial correlation coefficient between 
readability scores and the group (successful or failed 
summarization) for each LLM. The correlation 
coefficients and p-values can be found in Table 2. 

 
4.2. Predicting Explainability from Readability  
       Features 
 

A step beyond measuring correlation is trying to 
predict if the LLM will be able to summarize a code 
snippet from the readability of the snippet. In this 
Section, we train classifiers on readability features to 
answer this question. We would also like to determine 
the features that decide explainability. 

Keeping these goals in mind, we chose two 
classifiers: random forest and logistic regression with 
L1 regularization (Lasso). The task is to predict 
whether the code snippet will be summarized correctly 
by the LLM from the readability features of the code 
snippet (Table 1). Fig. 3 shows the accuracy across the 
six LLMs and two sets of readability features. The 
boxplots show the performance across the 100 folds of 
cross-validation. Each tick on the x-axis corresponds 
to a different LLM. 

 
 

Table 1. The median and mean readability scores  
of programs grouped by summarization outcomes 
(successful (S) or failed (F)). Results are rounded  
to 2 decimals. 

 

LLM 
Median 

(S) 
Median 

(F) 
Mean 

(S) 
Mean 

(F) 
Llama-3.2 

(3B) 
0.58 0.36 0.54 0.42 

Mixtral (8×7B) 0.66 0.25 0.56 0.35 
Llama-3.3  

(70B) 
0.60 0.21 0.53 0.34 

Qwen2.5-Coder 
(1.5B) 

0.60 0.22 0.52 0.31 

DeepSeekCoder 
(6.7B) 

0.61 0.06 0.54 0.26 

Codestral 
(22B) 

0.60 0.06 0.52 0.24 

 
Table 2. Mann-Whitney U-tests and point-biserial 

correlations. Results on the HumanEvalExplain benchmark 
is also displayed for comparison. 

 

LLM 
U-test  

p-value 
r_pb p_corr 

Results 
(%) 

Llama-
3.2 (3B) 

5.14 · 10−2 0.11 1.62 · 10−1 12.80 

Mixtral 
(8 × 7B) 

9.02 · 10−5 0.29 2.10 · 10−4 40.85 

Llama-
3.3 (70B) 

4.58 · 10−4 0.27 7.50 · 10−4 50.00 

Qwen2.5
-Coder 
(1.5B) 

2.21 · 10−5 0.30 1.07 · 10−4 57.32 

DeepSee
kCoder 
(6.7B) 

2.91 · 10−7 0.37 8.28 · 10−7 62.20 

Codestral
(22B) 

9.32 · 10−7 0.36 1.72 · 10−6 67.68 
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Fig. 3. Explainability results of random forest and logistic 
regression classifiers of different LLMs using both Buse 

and Posnett readability features. 
 

 
4.2.1. Feature Importance Analysis 
 

We examine the importance of the features in the 
trained classifiers. For the L1 logistic regression, we 
calculate the number of folds where the feature is 
active divided by the total number of folds, so we get 
the percentage of folds where the feature is active. We 
calculate this separately for each LLM, so we can 
compare which features are typically active for which 
LLM (Fig. 4). Features with consistently high 
utilization (such as the line length for Buse’s metric or 
Halstead’s Volume for Posnett’s metric) play a larger 
role in classification. 

The bar plot of Fig. 5 visualizes the mean and 
standard error of feature importance determined by the 
random forest classifier, macro-averaged across LLMs 
and folds. Features are ordered by their importance, 
and error bars indicate the standard error across LLMs. 
The results highlight which features contribute most 
significantly to the classification. 
 
 
5. Discussion 
 

The first question we asked was whether code 
readability scores correlate with the success of 
summarization. The boxplots (Fig. 1) and KDE plots 
(Fig. 2) show that there is significant difference 
between the readability score distributions of code 
snippets whose summarization was successful and 
snippets whose summarization failed. Table 2 shows 
the exact medians and means of these distributions. On 
average, the programs where summarization was 
successful have 4.99× higher medians and 1.72× 
higher means. Correlation is strongest for the 

DeepSeekCoder and Codestral models, with around a 
10× higher median and more than 2× higher mean 
readability for the successfully summarized group. The 
connection was further strengthened by the p-values 
obtained in the statistical tests (Table 2). 

 

 
 

Fig. 4. Feature utilization of the L1 logistic regression. 
Each cell in the heatmap indicates the percentage a feature 

was active across folds. 
 

 
 

Fig. 5. Mean and Standard Error of Feature Importance 
using the random forest classifier. 

 
The connection between readability and 

summarizability seems to be general as it is strong 
across all language models, except for Llama-3.2 (3B), 
where the p-values are not significant. We believe this 
is because this model was especially weak in code 
summarization: as Table 2 shows, it achieved only 
12.8 % in code summarization, where other models 
achieved 40.9 % to 67.7 %. 

The second question was whether it is possible to 
predict whether an LLM will summarize code 
successfully using explainable readability features. To 
answer this, we evaluated random forest and Lasso 
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logistic regression classifiers for each LLM, using a 
100-fold cross validation. Based on Fig. 3, which 
shows the accuracy of this prediction across the folds, 
the prediction is possible. 

We have chosen these classifiers and features since 
their results are explainable, and we were curious 
which features are important for summarizability. The 
heatmaps in Fig. 4 visualize the features selected by 
logistic regression with L1 (Lasso) regularization 
across the 100 folds. Mostly the same features are 
selected across all LLMs. 

Among the heatmap visualizing features proposed 
by Buse et al., the most significant are the average and 
maximum line length, the count of the most common 
identifier and character, and the maximum identifier 
length. From the three features used by Posnett et al., 
Hastead Volume and Entropy are consistently selected 
across LLMs, while the number of lines matters only 
for some. 

The same Posnett features are selected by random 
forest as by Lasso (Fig. 5). The situation is somewhat 
different for the features of Buse et al. Some of the 
same features are selected, like the count of the most 
common identifier and character. The others selected 
by Lasso (line length maximum and average, identifier 
length maximum) are also significant for random 
forest, but there are also some other features just as or 
more significant, like average number of assignments, 
and a host of other features that average. 
 
 
6. Conclusion 
 

In this work, we demonstrated that there is a strong 
connection between the readability of code and how 
well LLMs can explain (summarize) it. First, we 
demonstrated the correlation between code readability 
and explainability, then we built classifiers based on 
readability features to predict whether LLMs can 
summarize the code snippet correctly. 

Lastly, we analysed which readability features are 
important for code summarizability. These include the 
average and maximum line length, as well as the 
frequency of single characters and identifiers. Out of 
the three features of Posnett et al., the feature analysis 
has pointed out Halstead’s Volume and entropy. 

Our results were consistent across six open LLMs 
on the most widely used code summarization 
benchmark, HumanEvalExplain. 

In future work, we aim to examine the connection 
between code readability and explainability in more 
general settings: we would like to extend our 
experiments to a larger-scale benchmark with longer 
and more complex code snippets, and we would like to 
make measurements on different programming  
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Summary: We gather real-time traffic data from Trafikverket’s extensive camera network in Gothenburg and harness  
cutting-edge graph neural networks (GNNs) to generate precise predictions of road traffic density for the next hour. Each 
camera is treated as a graph node with edges representing road connectivity and spatial proximity. Vehicle detection is 
performed using YOLOv5, which generates accurate density metrics while filtering out background noise from shadows and 
reflections. We observed that increasing the training period from 3 days to 14 days generally leads to improved forecasting 
accuracy, as indicated by a reduction in the mean absolute percentage error (MAPE). For example, under the GWNET model, 
the MAPE decreased from 53.13 % with 3-day training to 47.28 % with 14-day training, demonstrating that longer training 
periods enable the model to better capture the underlying spatiotemporal dynamics. These results demonstrate the robustness 
of GNNs in traffic forecasting and underscore that abundant data is essential  –  not only for capturing rush-hour fluctuations 
but also for investigating daily and weekly patterns in future studies. 
 
Keywords: Graph neural network, Spatial dependence, Traffic prediction. 
 

 
1. Introduction 
 

Graph neural networks (GNNs) have emerged as a 
powerful framework for modeling complex 
relationships in data structured as graphs. Unlike 
traditional neural networks, GNNs operate directly on 
graph-structured data, making them particularly  
well-suited for tasks where spatial relationships are 
important. In the realm of traffic prediction, where 
understanding not only temporal structure but also 
spatial dependencies among road segments, GNNs 
offer significant advantages [1]. 

At their core, GNNs leverage the inherent structure 
of graphs to capture spatial dependencies and patterns. 
In traffic prediction tasks, roads and intersections can 
be naturally represented as nodes in a graph, with 
edges denoting connections or proximity between 
them. By incorporating this spatial information, GNNs 
can effectively model how traffic conditions propagate 
through a road network. 

One key strength of GNNs lies in their ability to 
aggregate information from neighboring nodes in the 
graph. Through iterative message passing schemes, 
GNNs accumulate and refine information from 
neighboring nodes, allowing them to capture complex 
spatial dependencies and patterns. This mechanism 
enables GNNs to learn representations that encode not 
only local characteristics of individual road segments 
but also global properties of the entire road network 
[2]. Moreover, GNNs can dynamically adapt to 
changing traffic conditions. By incorporating temporal 
information alongside spatial features, GNNs can 
capture how traffic patterns evolve over time. This 
temporal awareness allows GNNs to make accurate 
predictions even in dynamic traffic environments, 
where conditions may change rapidly [1-4]. 
Furthermore, GNNs facilitate learning, where 

additional data sources such as weather conditions and 
traffic cameras. By jointly modeling spatial, temporal, 
and additional contextual information, GNNs offer a 
holistic approach to traffic prediction that outperforms 
traditional methods. 

 
 

2. Previous Work 
 

At their core, GNNs leverage the inherent structure 
of graphs to capture spatial dependencies and patterns. 
In traffic prediction tasks, roads and intersections can 
be naturally represented as nodes in a graph, with 
edges denoting connections or proximity between 
them. By incorporating this spatial information, GNNs 
can effectively model how traffic conditions propagate 
through a road network. 

Recent advances in traffic forecasting have 
explored a variety of deep learning architectures to 
capture the complex spatio-temporal dynamics 
inherent in urban traffic. Li et al. [5] introduced the 
diffusion convolutional Recurrent Neural Network 
(DCRNN), which models traffic flow as a diffusion 
process over graphs to effectively capture continuous 
spatial–temporal dependencies. However, despite its 
strengths, DCRNN does not explicitly address abrupt 
phase transitions and requires large, diverse datasets 
for optimal performance. Similarly, Zhang et al. [6] 
developed a deep spatio-temporal residual network for 
citywide crowd flow prediction, integrating recent, 
periodic, and trend components. Although effective for 
aggregated flows, this approach struggles to 
differentiate between distinct traffic phases. 

In the context of Gothenburg, earlier studies [7] 
have primarily focused on the temporal dynamics of 
traffic flow using data from individual cameras, often 
employing Long Short-Term Memory (LSTM) 
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networks [8] – one of the three neural architectures we 
compare in our study. Recognizing that traffic systems 
are not solely temporal but also heavily influenced by 
spatial topology, our work extends these frameworks 
by integrating data from multiple cameras. In our 
model, each camera is represented as a node defined 
by its GPS coordinates and viewing direction, while 
edges are formed based on the physical distances 
between cameras with direct road connections. This 
graph-based formulation yields a simulated traffic 
network that more accurately reflects the actual layout 
of Gothenburg’s roads and intersections, providing a 
more comprehensive approach to analyzing urban 
traffic dynamics. 

 
 

2. Traffic Data and Processing 
 
The dataset originates from traffic cameras 

installed at various intersections throughout 
Gothenburg by Trafikverket. Each camera is equipped 
with GPS coordinates that pinpoint its precise location 
and define its field of view. We model each camera as 
a node within a directed graph where edges represent 
the road distances between connected cameras. Over 
27 consecutive days (from 5 am to 9 pm),  
minute-by-minute images were collected from  
57 cameras. For this study, we extracted subsets 

spanning 3, 7, and 14 consecutive days to assess the 
impact of training-set size on predictive accuracy, with 
each larger datasets fully incorporating the data from 
the smaller one. This integrated approach yields a 
simulated traffic network that closely approximates the 
actual layout of roads and intersections. 

Accurately converting images into traffic density 
measurements requires precisely identifying and 
counting vehicles under varying weather and lighting 
conditions. We use YOLOv5 [9] for vehicle detection, 
which offers a robust alternative to traditional counting 
methods that are sensitive to lighting variations [7] 
(see Fig. 1). Once vehicles are detected, we calculate 
pixel counts as a fraction of the total road area to derive 
density estimates. These values are then averaged over 
five-minute intervals to smooth out transient 
fluctuations. The resulting density measurements, 
along with the constructed spatial graph, form the input 
to a Graph Neural Network (GNN) that captures both 
the temporal dynamics and spatial relationships within 
the data. It is worth noting that because the entire 
image frame is used to define the region of interest – 
not just the road – density values can occasionally 
exceed one, although this is rare in practice. Moreover, 
transforming the raw data into a neural network-ready 
format involves several critical steps. In the 
subsequent section, we describe these processes  
in detail. 

 
 

 
 

Fig. 1. Artifacts and noise from shadows and reflections from traditional, filtering, algorithms for density estimation  
(left and middle) versus Yolov5 method (right). 

 
 

3.1. Image Pre-processing 
 

Initially, raw images collected from various 
cameras across Gothenburg are enriched with 
corresponding GPS coordinates. These coordinates are 
then used to build a graph that encapsulates the spatial 
relationships among the cameras, ensuring that the 
input to the neural network effectively represents road 
occupancy over short temporal windows. 

Traditional filtering methods [7] that combine edge 
detection with Gaussian blurring may lack precision in 
delineating vehicle boundaries. As shown in Fig. 1, 
these techniques often yield inaccurate vehicle density 
estimates throughout the day, primarily due to sunlight 
reflections on the road being misclassified as vehicles. 
To overcome these limitations, we employ the 
YOLOv5 model, pre-trained on the COCO dataset 

[10]. This approach reliably detects vehicles by 
generating bounding boxes across varying lighting 
conditions, see Fig. 1. 
 
 
3.2. Graph Construction 
 

The raw GPS data consist of latitude and longitude 
coordinates, along with a bearing that indicates each 
camera's field of view. To optimize the construction of 
our data graph, we represent camera locations as nodes 
and establish directed edges between them, forming a 
digraph (a directed graph). Self-connections between 
nodes are not permitted. 

Since cameras monitor roads in specific traffic 
directions, it is essential to establish node connections 
based on whether traffic flows in the direction the 
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camera is facing. For instance, consider Camera X and 
Camera Y: if traffic flows in the direction that Camera 
X is oriented – meaning Camera Y lies within its 
forward-facing view cone – a connection is established 
from X to Y. Conversely, if traffic flows opposite to 
the direction of Camera X's view, no connection is 
formed from X to Y. 

We manually checked each camera to determine 
the road direction and adjusted their respective masks 
(the green region shown in Fig. 1) accordingly. On 
bidirectional roads, for instance, where a single camera 
may capture traffic moving in both directions, we 
employ directional masks to separate and process the 
information for each direction individually. This 
approach ensures that node connections accurately 
reflect the observed traffic dynamics, with connections 
only formed when traffic flows in the camera's 
designated direction. 

Each camera’s GPS coordinates and viewing 
direction define a view cone. If another camera falls 
within a threshold distance R and an angular tolerance 

,ϕΔ  an edge is formed – potentially bidirectional, 

depending on observed traffic flow. This process 
yields the adjacency matrix A  that captures spatial 
relationships. Down-sampling to 5-minute intervals 
produces a time series per day for each of the 57 nodes. 
Following density estimation, the image datasets are 
then transformed into a tensor with dimensions 
( , , , ),B F S V , where B  denotes the batch size, F  

comprises features such as estimated density and 
temporal encodings, S  represents the time slice 
sample, and V  indicates the number of cameras. The 
final graph is shown in Fig. 2. 

 

 
 

Fig. 2. One representation of the data graph based  
on the GPS camera locations. 

 
 

3.3. Time-dependent Laplacian 
 

In spectral graph theory [11, 12], a graph's structure 
is often characterized by its Laplacian matrix, denoted 
by L . The Laplacian matrix is defined as, 
 

,L D A= −  (1) 
 
where A  is the adjacency matrix that represents the 
connections between nodes, and D  is a diagonal 
matrix whose entries represent the node degrees. A 
node degree is a measure of a node's connectivity 

within the graph. For node $i$, the degree is given by 
,ii ijj

D A=  which sums the weights of all edges 

connected to node .i  In unweighted graphs, this sum 
equals the number of connections (or edges) that node 
i  has. In weighted graphs, it represents the total weight 
of the connections. This concept is critical, as it 
quantifies the importance or centrality of a node within 
the network. 

While in many applications the Laplacian matrix 
remains static upon its creation, in the context of traffic 
dynamics, this assumption is only conditionally valid. 
Particularly during peak traffic periods such as 
morning and afternoon rush hour, there tends to be a 
directional preference in the flow of traffic. This 
directional bias arises from commuters traveling to and 
from work, contributing to the temporal variability of 
traffic patterns. Consequently, there arises a need to 
model this time-varying behavior by transforming the 
Laplacian matrix as, 

 
( )L L t→  (2) 

 
Several methods have been proposed to effect this 

transformation. One approach employs neural 
networks to predict and generate the edge strengths of 
the adjacency matrix, thereby capturing the evolving 
dynamics of traffic flow. However, traffic dynamics 
exhibit distinct phases [13, 14] – triggered by density 
fluctuations – and are subject to rapid shifts. 
Consequently, training neural networks to accurately 
capture such multi-phase dynamics requires a 
substantial amount of data to learn optimal 
transformations of the Laplacian matrix. Early 
attempts to apply deep neural networks for this 
purpose have encountered challenges [5, 6], 
particularly due to limited dataset sizes, which hamper 
effective learning. 

To address these challenges, we propose a dynamic 
modification of the adjacency matrix ( )A A t→ , 

defined as 
 

0( ) (1 ) '( ),A t A A tω ω= − +  (3) 
 
where 0A  denotes the static adjacency matrix 

constructed from GPS data, and '( )A t  is a  

time-varying adjustment that reflects evolving traffic 
patterns. The parameter [0,1]ω ∈  governs the  

trade-off between the inherent static connectivity of 
the road network and its dynamic, temporal variations. 
Based on preliminary experiments, an equal weighting 
( 0.5)ω =  provided a robust balance, ensuring that 

neither the stable structural features nor the transient 
traffic fluctuations dominate the learned 
representation. In our formulation, 0A  is our initial 

adjacency matrix estimated from GPS data as 
explained in Section 3.2, and '( )A t  is re-evaluated at 

each time iteration via a linear transformation of the 
updated input matrix as follows, 
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57 57 57 2 2 12 12 57'( ) ( ) ,A t Q M t P× × × ×=  (4) 
 
where Q  and P  are transformation matrices that map 

an intermediate, lower-dimensional representation 
back into the full node space. In our framework, we set 

57 2 ,Q ×∈ ℜ  2 12 ,M ×∈ℜ  and 12 57P ×∈ℜ so that the 

product 57 57( )QM t P ×∈ ℜ  matches the dimensions of 

the underlying network which is described in  
Section 3.4. This design ensures that the learned 
transformations are directly compatible with the 
network structure. By leveraging the geometric 
structure of the GPS to map the intricate connection of 
cameras, combined with the temporal information 
embedded within the network and the Laplacian, this 
approach establishes a robust foundation for modeling 
traffic density. 
 
 
3.4. Architectures 
 

Our study centers on an adapted version of the 
attention-based spatio-temporal graph convolutional 
network (ASTGCN) [4], which is designed to capture 
the complex interplay between traffic flow and 
network topology via spatial and temporal 
convolutions enhanced by an integrated attention 
mechanism. In developing this architecture, we have 
incorporated specific adaptations to address the unique 
challenges of urban traffic forecasting as  
described above. 

To provide context for our approach, we compare 
the adapted ASTGCN against several baseline models. 
These include graph wavenet (GWNET) [15], 
hierarchical graph convolutional network (HGCN) 
[16], graph-refined convolutional network (GRCN) 
[17], as well as traditional time-series models such as 
long short-term memory networks (LSTM) [7] and an 
autoregressive integrated moving average model 
(ARIMA) [18]. This comprehensive evaluation 
enables a balanced assessment of the adapted 
ASTGCN's performance relative to established 
approaches. 

 
 

4. Results and Discussion 
 

Our experiments reveal that the volume of training 
data plays a crucial role in accurately forecasting 
traffic evolution over the next hour. Using a dataset 
spanning 27 days collected from 57 camera locations, 
we evaluated subsets of 3, 7, and 14 consecutive days. 
Performance was measured using Mean Absolute 
Error (MAE), Mean Absolute Percentage Error 
(MAPE), and Root Mean Square Error (RMSE). As 
shown in Table 1, extending the training period allows 
the model to better capture the underlying  
spatio-temporal dynamics. For instance, under the 
GWNET model, the MAPE decreases from 53.13 % 
with a 3-day training period to 47.28 % with a 14-day 

training period. In the 3-day training scenario, the 
LSTM model achieves an MAE of 0.0246, a MAPE of 
48.18 %, and an RMSE of 0.0414, indicating relatively 
small average errors both in absolute and percentage 
terms compared to ARIMA, which has higher error 
values (MAE of 0.0372, MAPE of 81.85 %, and 
RMSE of 0.0581). Similar comparisons can be drawn 
across other training durations, where methods like 
HGCN and GRCN generally show lower errors than 
ARIMA or even ASTGCN, suggesting they are more 
effective for this task. The test set consistently includes 
7 days, while the validation set comprises 6 days out 
of the 27-day dataset. Given that traffic dynamics are 
influenced by phenomena such as phase transitions and 
hysteresis, precise forecasting of density fluctuations 
is critical for anticipating transitions between traffic 
phases, including stop-and-go and synchronized  
flow [13, 14]. 

Although our current dataset is limited to 27 days, 
these findings highlight the potential benefits of 
scaling up our data volume. Our long-term objective is 
to compile a full-year dataset, which we expect will 
yield further insights into traffic evolution and lead to 
even more robust predictions. 

 
 

4.1. Inference and Temporal Prediction Accuracy 
 

A further evaluation of our model involves a direct 
comparison between predicted traffic densities and 
observed values. Fig. 3 illustrates the temporal 
evolution of density predictions for the next hour at 
two randomly selected network nodes. The predictions 
(depicted in dark red) closely follow the overall trend 
of the actual density values (depicted in orange), 
demonstrating the capability of the GNN to capture 
large-scale temporal patterns. 

Closer inspection, however, reveals discrepancies 
in finer temporal details. This observation, consistent 
with the findings in [7] – which utilized a larger dataset 
from a single camera – suggests that the reduced 
precision at smaller time scales may be attributed to 
either the limited size of our current dataset or to 
suboptimal encoding of spatial information within the 
GNN. Efforts to expand the dataset are underway, and 
future work will focus on refining the spatial encoding 
methodology. 
Despite common concerns about the computational 
demands of GNN models, our approach maintains a 
constant inference time regardless of the training data 
volume. This is because the model architecture – and 
hence the number of parameters – remains unchanged 
as more data is incorporated during training. 
Consequently, while increased training data enhances 
prediction accuracy, it does not impose additional 
computational overhead during inference. Moreover, 
following [19, 20], our design enables real-time 
deployment on resource-constrained devices such as a 
Raspberry Pi, thereby eliminating the need for  
cloud-based processing. 
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Table 1. Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) 
evaluated across various model architectures trained on a subset of our data. Data from cameras/intersections  

in the Gothenburg network. 
 

Method 
prediction with 3-day training prediction with 7-day training prediction with 14-day training 

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE 

ARIMA 0.0372  0.8185  0.0581 0.0379 0.8031 0.0557 0.0393 0.8291 0.0572 

LSTM 0.0246 0.4818 0.0414 0.0236 0.4689 0.0381 0.0325 0.6024 0.0511 

GWNET 0.0259 0.5313 0.0442 0.0247 0.5297  0.0385 0.0245 0.4728 0.0398 

HGCN 0.0263  0.4945 0.0414 0.0238 0.4741 0.0380 0.0239 0.4920 0.0376 

GRCN 0.0258 0.4720 0.0453  0.0239 0.4927 0.0387 0.0237 0.4815 0.0384 

ASTGCN 0.0333 0.6479 0.0516 0.0299 0.5621  0.0466  0.0338 0.5731 0.0543 

 
 

 
 

Fig. 3. Density prediction in next 1 hour (dark red) versus true density in 1 hour (orange) for two different randomly chosen 
graph locations. Density is measured as space occupied by vehicles within camera mask. 

 
 

3. Conclusion 
 

In this study we demonstrated that Graph Neural 
Networks (GNNs) can effectively forecast real-time 
traffic density using data from Gothenburg’s camera 
network. By leveraging an attention-based  
spatial-temporal convolutional framework along with 
hierarchical graph convolutional layers, our model 
effectively captures both the fine-grained temporal 
dynamics and the intricate spatial interdependencies 
present in urban traffic. Vehicle density metrics – 
extracted from real-time images via YOLOv5 – are 
transformed into structured tensors enriched with 
temporal encodings, while a dynamically updated, 
time-dependent Laplacian continuously refines the 
graph representation to adapt to rapid changes in traffic 
flow. This integrated approach yields significant 
improvements in prediction accuracy, as evidenced by 
the progressive reduction in MAPE when the training 
set is expanded from 3 to 14 days. Although our current 
experiments are based on 57 cameras, the inherent 
design of GNNs makes them well suited to handle 
much larger networks. In urban environments 
equipped with thousands of sensors, additional 
cameras would likely enhance performance by 
providing richer spatial context, thereby improving 

local predictions. At the same time, we recognize that 
increasing the number of nodes raises computational 
complexity. This challenge can be addressed through 
advanced strategies such as efficient graph sampling, 
intelligent partitioning, and dynamic edge-weighting, 
through for instance GraphSAGE, which efficiently 
scale information and selectively focus computational 
resources on the most informative connections. 
Evidence from large-scale traffic studies (e.g., those 
utilizing the PeMSD8 dataset) suggests that the 
benefits of incorporating a denser sensor network can 
outweigh the overhead of additional graph complexity. 
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Summary: Dialectal Arabic, particularly Algerian Darija, suffers from a lack of linguistic resources, limiting its integration 
into natural language processing applications. Additionally, training large language models (LLMs) requires significant 
computational power. To overcome these challenges, we leverage knowledge distillation to train compact BERT-based student 
models using DziriBERT as the teacher model. These student models vary in hyperparameter configurations to assess their 
impact on training effectiveness. As a baseline, we also trained a similarly structured small model without knowledge 
distillation to measure the technique’s contribution. The models were then fine-tuned on multiple downstream tasks, including 
language and dialect identification, emotion detection, topic classification, and sentiment analysis. The results are promising, 
with performance comparable to the larger teacher model and even surpassing other multi-dialectal models. 
 
Keywords: Algerian dialect, BERT, Knowledge distillation, Low-resource languages, Small pretrained models. 
 

 
1. Introduction 
 

Arabic dialects remain an underexplored area of 
research due to the lack of resources compared to 
Modern Standard Arabic (MSA), which is widely used 
in official documents, literature, and education, 
whereas dialects are primarily spoken in everyday life 
and used informally on social media. These dialects 
vary significantly from one country to another and are 
generally classified into two main groups [1]: 
Maghrebi dialects, spoken in North Africa and Middle 
Eastern dialects, which include Levantine dialects, 
Arabian Peninsula dialects, the Iraqi dialect, as well as 
Egyptian and Sudanese dialects. Despite their 
diversity, Arabic dialects lack a standardized 
representation and writing system, making the 
development of language models capable of 
understanding them particularly challenging. With the 
increasing adoption of Large Language Models 
(LLMs) such as BERT [2], several efforts have been 
made to incorporate dialectal Arabic. The first major 
formal Arabic model, AraBERT [3], was trained on 
MSA, while later models such as MARBERT [4], 
Qarib [5], Camel-DA [6], and Camel-Mix [6] 
integrated a proportion of dialectal Arabic extracted 
from social media. After that mono dialectal models 
had been developed specifically for individual dialects, 
such as DarijaBERT [7] for Moroccan Darija and 
TunBERT [8] for Tunisian dialect, for the Algerian 
dialect specifically, the only existing BERT model to 
date is DziriBERT [9], a BERT based model trained on 
an Algerian corpus written in both Arabic and Latin 
scripts. However, a major limitation of these models is 
their size, as pre-trained language models are 
computationally expensive, making them difficult to 
deploy efficiently on resource-limited devices [10]. To 
address this issue, techniques such as knowledge 

distillation have been proposed, allowing a smaller 
model (student) to learn from a larger model (teacher), 
thereby benefiting from the teacher’s knowledge while 
maintaining a reduced size. This paper presents our 
work on applying knowledge distillation to the 
Algerian dialect, leading to the development of a new 
lightweight language model called TinyDziriBERT. 

The paper is structured as follows: Section 2 
provides an overview of related work, Section 3 
describes the datasets used for pre-training and 
evaluation, and Section 4 outlines the methodology. 
Section 5 details the evaluation process, while  
Section 6 presents and discusses the results. Finally, 
Section 7 summarizes the findings of this work. 
 
 
2. Related Work 
 

Dialectal Arabic is classified as a low-resource 
language due to the scarcity of labeled datasets 
necessary for building robust models. Additionally, it 
lacks a standardized written form and is mainly used in 
informal settings, such as social media and everyday 
conversations. In contrast, Modern Standard Arabic 
(MSA) dominates formal domains like education, 
literature, and official documents. This imbalance has 
led to a significant disparity in available resources, 
making dialectal Arabic an underexplored area  
of research. 

Recent advancements in NLP, particularly the 
development of large pre-trained language models 
based on the Transformer architecture [11], have 
revolutionized the field. Models such as GPT [12], 
BERT, and RoBERTa [13] have set new benchmarks 
across various tasks. In the context of Arabic, several 
models have been proposed to address the challenges 
posed by the language’s diglossic nature. For instance, 
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AraBERT was among the first major models trained 
primarily on MSA. Subsequent models, such as 
MARBERT, Qarib, Camel-DA, and CamelMix, have 
incorporated substantial amounts of dialectal Arabic 
data, primarily sourced from social media platforms. 
Additionally, mono dialectal models like DarijaBERT, 
MorrBERT, and MorRoBERTa [14] for Moroccan 
Darija, TunBERT for Tunisian dialect, and DziriBERT 
for Algerian dialect have been developed to better 
capture the linguistic nuances of specific dialects. 

Despite their effectiveness, these pre-trained 
models often come with significant computational 
costs due to their large size, making them impractical 
for deployment on resource-constrained devices. To 
mitigate this issue, knowledge distillation has emerged 
as a promising solution. Originally introduced by 
Buciluǎ et al. [15] and later formalized by Hinton et al. 
[16], knowledge distillation is a model compression 
technique where a smaller student model is trained to 
approximate the predictions of a larger teacher model. 
Since its inception, knowledge distillation has been 
successfully applied across various domains, including 
computer vision [17], speech recognition [18], and 
NLP [19, 20]. 

In the realm of Arabic NLP, knowledge distillation 
has been employed to develop lightweight versions of 
large-scale models. For example, a distillation-based 
approach has been used for restoring Arabic syntactic 
diacritics using LSTM networks, where multiple 
taggers (teachers) were utilized to train a single tagger 
(student) [21]. Similarly, models like Arabic 
DistilBERT [22] have been created to reduce BERT 
model size while maintaining robust performance. 
Building on these efforts, our work extends the 
application of knowledge distillation to the Algerian 
dialect, resulting in the development of 
TinyDziriBERT – a compact model specifically 
tailored for this under-resourced variant. 
 
 
3. Datasets 
 

In the following, we will provide details about the 
datasets used for training and evaluating our model. 
 
3.1. Training Dataset 
 

The training dataset consists of 1.6 million 
Algerian dialect sentences extracted from an extended 
version of CALYOU, an Algerian dialect corpus 
extracted from YouTube [23], totaling approximately 
22 million tokens, written in both Arabic and  
Latin scripts. 

Table 1 presents the distribution of words written 
in Arabic and Latin scripts within the dataset, while  
Table 2 presents example sentences from the dataset 
along with their English translations. 
 
3.2. Evaluation Dataset 
 

The trained models were evaluated using four task 
specific datasets: Twifil Dataset [24], Narabizi Dataset 

[25], Boutef Dataset [26] and another dialectal  
dataset [27]. 
 
 

Table 1. Word Distribution in the training Dataset. 
 

Arabic Script Latin Script Total words 
13 M 9 M 22 M 

 
 

Table 2. Examples of Sentences in the Training Dataset. 
 

Sentence English Translation 
 Why are you crying my brother  و علاش تبكي يا خويا
wach had tmskhir What is this nonsense 

mahoumch mndabtin They are not disciplined 
 
3.2.1. Twifil Dataset 
 

For this dataset, there are two sub-datasets: Twifil 
Emotion (Twifil-E) and Twifil Sentiment (Twifil-S): 

● Twifil Sentiment: 9156 Algerian tweets 
classified according to the sentiment expressed 
by the user. The sentiment can be Positive, 
Negative, or Neutral; 

● Twifil Emotion: 5054 Algerian tweets classified 
into 10 categories based on the Plutchik’s  
model [28]. 

 
3.2.2. Narabizi Dataset 
 

The Narabizi Dataset consists of 1287 Algerian 
sentences written in Latin script, each labeled with 
both a sentiment and a topic. These sentences were 
used to create two separate datasets: Narabizi 
Sentiment (NarabiziS) and Narabizi Topic 
(NarabiziT). The labels for each dataset are detailed in 
Table 3. 
 
 

Table 3. Label Distribution in the Narabizi Datasets. 
 

Narabizi Sentiment Narabizi Topic 
Positive, Negative, 

Neutral, Mix 
Sport, None, Societal, 

Politics, Religion 
 
 
3.2.3. Boutef Dataset 
 

The Boutef Dataset is a collection of over  
3600 fake news posts written in Algerian and Tunisian 
dialects, Modern Standard Arabic (MSA), French, and 
English, with occurrences of code-switching between 
these languages. Each post in the dataset is annotated 
with 16 tags, including details about the dialect or 
language used. In our study, we focused on this 
linguistic information rather than the fake news aspect. 
 
3.2.4. Dialectal Dataset 
 

We used 5271 sentences from this dataset (Dial) 
[27], categorized as Algerian Arabizi, French, or code 
switching between the two. 
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4. Methodology 
 

In this work, we train compact BERT models using 
knowledge distillation, with DziriBERT as the teacher. 
Trainings were conducted using the Hugging Face API 
on a Tesla V100-PCIE-16GB GPU. 

While DziriBERT follows the standard BERT-base 
architecture, the student models, TinyDziriBERT, are 
significantly smaller. Table 4 provides a detailed 
comparison of their architectures. 
 
 

Table 4. Comparison of Teacher and Student Model 
Architectures. 

 

Model 
Number 
of layers 

Hidden 
size 

Attention 
heads 

DziriBERT 12 768 12 
TinyDziriBERT 3 256 4 

 
All models share the same vocabulary, consisting 

of 50000 tokens (the teacher’s vocabulary). 
Since the higher layers of the teacher model contain 

richer syntactic, referential, and textual knowledge, the 
student model is initialized in a bottom-up manner. 
The teacher has ܰ × ݇ layers, while the student has ܰ 
layers. The ݅-th layer of the student is initialized using 
the (݅ × ݇)-th layer of the teacher, as shown in Fig. 1. 
 

 
 

Fig. 1. Student Model Layer Initialization. 
 
 

4.1. Training Methodology 
 

The training process utilizes Masked Language 
Modeling (MLM), where a percentage of tokens in 
each input sentence from the dataset are randomly 
masked. The objective is to predict these masked 
tokens. The sentences with masked tokens are then 
processed by both the teacher model and the student 
model to generate logits. 

The student model is optimized using a hybrid loss 
function as shown in Fig. 2, combining the 
CrossEntropy (CE) loss that measures the difference 
between the student model’s predictions and the true 
labels and the Kullback-Leibler (KL) Divergence Loss 

that encourages the student model to mimic the logits 
generated by the teacher model by comparing  
their logits. 
 

 
 

Fig. 2. Knowledge Distillation for TinyDziriBERT. 
 

The total loss is calculated as: 
ݏݏܮ  = ߙ ⋅ ŷ௦௧௨ௗ௧ܶ)ܮܭ ||ŷ௧ܶ ) × ܶଶ + + (1 − (ߙ ⋅ ,௦௧௨ௗ௧ݕ)ܧܥ  ), (1)ݕ

 
where ߙ balances the contribution of the distillation 
loss and the MLM loss. ŷ௦௧௨ௗ௧ and ŷ௧ are the 
logits generated by the student and teacher models, 
respectively, and ݕ	represents the true tokens. The 
logits are softened using a temperature parameter ܶ. 
The KL divergence is scaled by ܶଶ. 
 
 
4.2. Hyperparameter Variations and Baseline  
       Comparison 
 

To evaluate the impact of various hyperparameters 
on the model’s performance, we conducted a series of 
experiments by adjusting key parameters. The MLM 
probability was varied across values of [0.15,…,0.35] 
to determine the optimal proportion of tokens to mask 
during training. Additionally, the weighting factor α 
was tested with values belonging to [0.3,…,0.7]. We 
also experimented with two values for the temperature 
parameter ܶ, specifically 1 and 2, to analyze the effect 
of softened logits on the distillation process. In the 
following, the model name TDBxxyyt refers to 
TinyDziriBERT, where xx represents the MLM 
probability, yy denotes the alpha value for distillation, 
and t indicates the temperature used during knowledge 
distillation. As a baseline, we trained a 
TinyDziriBERT model without applying knowledge 
distillation, using a 50000-token vocabulary created 
with the WordPiece tokenizer [29] applied to the 
training dataset. 
 
 
5. Evaluation 
 

To evaluate performance and efficiency, we  
fine-tuned the models on Dialect and Language 
Identification, Sentiment Analysis, Emotion 
Detection, and Topic Identification. For all the datasets 
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we split them into 80 % for training and 20 % for 
testing, with fine-tuning conducted over 4 epochs on 
an NVIDIA RTX 2060 SUPER (8 GB). 

For sentiment analysis, we used the Twifil 
Sentiment and Narabizi Sentiment datasets. Emotion 
detection was performed on the Twifil Emotion 
dataset, while dialect and language identification were 
conducted using the BOUTEF dataset and the other 
dialectal dataset (Dial). Topic detection was carried out 
using the Narabizi Topic dataset. 

The models were evaluated against their teacher, 
DziriBERT, as well as other multi-dialectal models. 
Table 5 provides a comparison of the sizes of our 
model with those of other pre-trained models used for 
benchmarking. 
 
 

Table 5. Models size comparison. 
 

Model 
Size 
(Mo) 

Number of 
parameters 

(M) 
Factor (×) 

mBERT 669 167 9 
MarBERT 654 163 9 

araBERT-v02 543 136 8 
Qarib 543 135 8 

DziriBERT 498 124.5 7 
Camel-Da 439 109 6 
Camel-mix 439 109 6 

TDB 70.8 18.6 - 
 

Table 6 presents the vocabulary size of each model 
along with the script used in the tokens of each 
vocabulary. 
 
 

Table 6. Vocabulary size and token script of each model. 
 

Model Vocabulary size Token Script 
TDB 50K Arabic + Latin 

DziriBERT 50K Arabic + Latin 
mBERT 110K Multilingual 

araBERT-v02 64K Arabic 
MarBERT 100K Arabic 

Qarib 64K Arabic 
Camel-Da/mix 30K Arabic 

 
 
6. Results 
 

As presented in Table 7, the distilled 
TinyDziriBERT model (TDB25052) achieves 78.39 % 
accuracy on the Twifil Sentiment task, closely 
approaching DziriBERT’s 79.86 %. This highlights the 
effectiveness of knowledge distillation in retaining 
much of the teacher model’s performance while 
reducing its size by approximately sevenfold. 
Likewise, in the Twifil Emotion task, TDB15052 
attains an accuracy of 66.04 %. In contrast, the non-
distilled TinyDziriBERT (TDB-no distil) exhibits 
significantly lower performance, with accuracy 
dropping to 71.08 % for sentiment analysis and 60.01 
% for emotion detection. This notable gap underscores 

the crucial role of knowledge transfer in preserving 
model effectiveness. 
 
 

Table 7. Results on Twifil and Boutef Datasets. 
 

Model 
Twifil BOUTEF 

S-Acc E-Acc Acc F1 
mBERT 73.93 62.47 72.33 70.81 

araBERT-v02 77.39 68.14 77.56 76.27 
Qarib 77.69 70 77.17 76.22 

MarBERT 80.12 70.53 77.92 76.62 
Camel-Da 75.03 67.88 74.77 71.99 
Camel-mix 77.61 69.42 79.30 78.27 
DziriBERT 79.86 70.27 83.32 82.29 
TDB25052 78.39 65.31 78.40 74.84 
TDB15052 77.84 66.04 79.21 75.91 

TDB-nodistil 71.08 60.01 73.05 65.87 
 

For dialect identification, the best-performing 
distilled model (TDB35052) achieves an F1 score of 
76.12, nearly matching DziriBERT’s 77.34 (See  
Table 8). The non-distilled variant (TDB-no distil) lags 
behind with an F1 score of 73.19, further validating the 
role of distillation in enhancing performance. 
 
 

Table 8. Results on Narabizi and Dial. 
 

Model 
Narabizi Dial 

S-Acc T-Acc Acc F1 
TDB25052 56.64 54.10 75.68 75.27 
TDB35052 57.77 53.43 76.32 76.12 
TDB25032 58.16 53.78 75.96 75.78 

TDB-nodistil 50.85 40.15 73.53 73.19 
DziriBERT 64.21 66.36 77.48 77.34 

 
When compared to larger models like mBERT and 

AraBERT, TinyDziriBERT demonstrates competitive 
performance. For instance, mBERT achieves an 
accuracy of 72.33 % in language identification with 
Boutef dataset, while AraBERT-v02 reaches 77.56 %, 
both falling short of TDB15052’s 79.21 %. This 
suggests that models specifically tailored for the 
Algerian dialect, such as TinyDziriBERT, outperform 
general-purpose multi-dialectal models in  
dialect-specific tasks. 

The results also reveal that increasing the size of 
the MLM percentage improves model performance. 
For example, TDB35052 outperforms TDB25052 with 
the dialect dataset, achieving an F1 score of 76.12 % 
compared to 75.27 %. 
 
 
7. Conclusion 
 

Knowledge distillation proves to be an effective 
technique for developing compact yet powerful 
models tailored to the Algerian dialect. By transferring 
knowledge from a larger, pre-trained model 
(DziriBERT) to a smaller student model 
(TinyDziriBERT), we achieve a significant reduction 
in model size while maintaining high performance 
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across multiple natural language processing (NLP) 
tasks. Despite its smaller architecture, TinyDziriBERT 
demonstrates competitive accuracy, closely matching 
the results of DziriBERT and even surpassing  
general-purpose models such as mBERT and 
AraBERT in dialect-specific tasks. TinyDziriBERT 
opens new possibilities for deploying NLP solutions 
on mobile devices, edge computing platforms, and 
low-cost infrastructures for an under-resourced 
language, namely the Algerian dialect. 
 
 
References 
 
[1]. S. Harrat, K. Meftouh, M. Abbas, K.-W. Hidouci,  

K. Smaili, An Algerian dialect: Study and resources, 
International Journal of Advanced Computer Science 
and Applications, Vol. 7, Issue 3, 2016, pp. 384-396. 

[2]. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: 
Pre-training of deep bidirectional transformers for 
language understanding, in Proceedings of the 
Conference of the North American Chapter of the 
Association for Computational Linguistics: Human 
Language Technologies, Vol. 1, June 2019,  
pp. 4171-4186. 

[3]. W. Antoun, F. Baly, H. Hajj, AraBERT: Transformer-
based model for Arabic language understanding, in 
Proceedings of the 4th Workshop on Open-Source 
Arabic Corpora and Processing Tools, with a Shared 
Task on Offensive Language Detection, May 2020,  
pp. 9-15. 

[4]. M. Abdul-Mageed, A. Elmadany, E. M. B. Nagoudi, 
ARBERT & MARBERT: Deep bidirectional 
transformers for Arabic, in Proceedings of the 59th 
Annual Meeting of the Association for Computational 
Linguistics and the 11th International Joint Conference 
on Natural Language Processing, Vol. 1, Aug. 2021,  
pp. 7088-7105. 

[5]. A. Abdelali, S. Hassan, H. Mubarak, K. Darwish,  
Y. Samih, Pre-training BERT on Arabic tweets: 
Practical considerations, arXiv preprint, 2021, 
arXiv:2102.10684. 

[6]. G. Inoue, B. Alhafni, N. Baimukan, H. Bouamor,  
N. Habash, The interplay of variant, size, and task type 
in Arabic pre-trained language models, in Proceedings 
of the Sixth Arabic Natural Language Processing 
Workshop, Apr. 2021, pp. 92-104. 

[7]. K. Gaanoun, A. M. Naira, A. Allak, I. Benelallam, 
DarijaBERT: a step forward in NLP for the written 
Moroccan dialect, International Journal of Data 
Science and Analytics, Vol. 9, Jan. 2024, pp. 23-40. 

[8]. A. Messaoudi, A. Cheikhrouhou, H. Haddad,  
N. Ferchichi, M. BenHajhmida, A. Korched, M. Naski, 
F. Ghriss, A. Kerkeni, Tunbert: Pretrained 
contextualized text representation for Tunisian dialect, 
arXiv preprint, 2021, arXiv:2111.13138. 

[9]. A. Abdaoui, M. Berrimi, M. Oussalah, A. Moussaoui, 
Dziribert: a pre-trained language model for the 
Algerian dialect, arXiv preprint, 2021, 
arXiv:2109.12346. 

[10]. X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li,  
F. Wang, Q. Liu, TinyBERT: Distilling BERT for 
natural language understanding, in Findings of the 
Association for Computational Linguistics: EMNLP 
2020 (T. Cohn, Y. He, Y. Liu, Eds.), Association for 
Computational Linguistics, Nov. 2020, pp. 4163-4174. 

[11]. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,  
L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, 
Attention is all you need, arXiv preprint, 2017, 
arXiv:1706.03762. 

[12]. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,  
I. Sutskever, et al., Language models are unsupervised 
multitask learners, OpenAI Blog, Vol. 1, Issue 8,  
2019, 9. 

[13]. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,  
O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov, 
Roberta: A robustly optimized BERT pretraining 
approach, arXiv preprint, 2019, arXiv:1907.11692. 

[14]. O. Moussaoui, Y. El Younoussi, Pre-training two 
BERT-like models for Moroccan dialect: 
MorroBERTA and morrBERT, MENDEL, Vol. 29, 
2023, pp. 55-61. 

[15]. C. Buciluundefined, R. Caruana, A. Niculescu Mizil, 
Model compression, in Proceedings of the 12th ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining (KDD’06), 2006,  
pp. 535-541. 

[16]. G. E. Hinton, O. Vinyals, J. Dean, Distilling the 
knowledge in a neural network, arXiv preprint, 2015, 
arXiv:1503.02531. 

[17]. G. Habib, T. Jan Saleem, S. M. Kaleem, T. Rouf,  
B. Lall, A comprehensive review of knowledge 
distillation in computer vision, arXiv preprint, 2024, 
arXiv:2404.00936. 

[18]. J. W. Yoon, H. Lee, H. Y. Kim, W. I. Cho, N. S. Kim, 
Tutornet: Towards flexible knowledge distillation for 
end-to-end speech recognition, IEEE/ACM 
Transactions on Audio, Speech, and Language 
Processing, Vol. 29, 2021, pp. 1626-1638. 

[19]. X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li,  
F. Wang, Q. Liu, Tinybert: Distilling BERT for natural 
language understanding, arXiv preprint, 2019, 
arXiv:1909.10351. 

[20]. V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a 
distilled version of BERT: smaller, faster, cheaper and 
lighter, arXiv preprint, 2019, arXiv:1910.01108. 

[21]. Y. Hifny, Recent advances in Arabic syntactic 
diacritics restoration, in Proceedings of the IEEE 
International Conference on Acoustics, Speech and 
Signal Processing (ICASSP’21), 2021, pp. 7768-7772. 

[22]. H. Adil, A. Elidrisi, M. Saeed, Knowledge Distillation 
of BERT Language Model on the Arabic Language, 
2023, https://openreview.net/forum?id=-
bMH1Sk8SSF 

[23]. K. Abidi, M. A. Menacer, K. Smaili, CALYOU: A 
comparable spoken Algerian corpus harvested from 
YouTube, in Proceedings of the 18th Annual 
Conference of the International Communication 
Association (Interspeech’17), Aug. 2017. 

[24]. L. Moudjari, K. Akli-Astouati, F. Benamara, An 
Algerian corpus and an annotation platform for opinion 
and emotion analysis, in Proceedings of the Twelfth 
Language Resources and Evaluation Conference, May 
2020, pp. 1202-1210. 

[25]. S. Touileb, J. Barnes, The interplay between language 
similarity and script on a novel multi-layer Algerian 
dialect corpus, in Findings of the Association for 
Computational Linguistics: ACL-IJCNLP 2021  
(C. Zong, F. Xia, W. Li, and R. Navigli, Eds.),  
Aug. 2021, Association for Computational Linguistics, 
pp. 3700-3712. 

[26]. K. Smaïli, A. Hamza-Jamann, L. David, A. Djegdjiga, 
BOUTEF: Bolstering Our Understanding Through an 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

166 

Elaborated Fake News Corpus, in Proceedings of the 
8th International Conference on Arabic Language 
Processing, Morocco, Apr. 2024. 

[27]. C. Zakaria, K. Smaïli, B. Sahnoun, A. Chala,  
R. Agagna, C. Amirat, Algerian Arabizi rumour 
detection based on morphosyntactic analysis, 
International Journal of Knowledge Engineering and 
Data Mining, Vol. 8, Issue 1, 2023, pp. 43-66. 

[28]. R. Plutchik, Emotions: A general psychoevoiutionary 
theory, in Approaches to Emotion, Psychology Press, 
2014, pp. 197-219. 

[29]. Y. Wu, M. Schuster, Z. Chen, Q. V. Le, et al., Google’s 
neural machine translation system: Bridging the gap 
between human and machine translation, arXiv 
preprint, 2016, arXiv:1609.08144.

 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

167 

(046) 
 

An Evaluation of General-purpose Large Language Models  
for Aspect Summarization 

 
S. Frank 1,2, C. Gütl 1 and A. Wagner 2 

1 Graz University of Technology, Institute of Human-Centred Computing, Sandgasse 36,  
8010 Graz, Austria 

2 CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland 
E-mail: sarah.frank@cern.ch 

 
 
Summary: The rapid rise of large language models (LLMs) has led to the development of both general-purpose and specialized 
models fine-tuned for concrete tasks. While such specialized models do often lead to some improvements of results, the process 
of additional training and fine-tuning is resource-intensive, raising concerns about sustainability. This paper takes the first 
steps in investigating the benefit of specialized versus general-purpose LLMs by focusing on the effectiveness of  
prompt-engineering for aspect summaries of scientific publications and whether the improvements can make up for lack of 
additional fine-tuning. A small sample of scientific papers was processed using several general-purpose LLMs with different 
prompts to generate aspect summaries of methods, research questions, and main contributions. The quality of these summaries 
was assessed with ROUGE scores, with a focus on factual consistency with the original texts. This work provides insights into 
the successes and limitations of prompt-engineering when opposed to specialized fine-tuned models. 
 
Keywords: Large language models, Aspect summarization, Prompt-engineering, Natural language processing, Scientific 
summarization. 
 

 
1. Introduction 
 

The past years have given rise to a rapidly 
increasing number of large language models (LLMs), 
both general-purpose as well as fine-tuned, specialized 
versions. General-purpose models such as GPT, 
DeepSeek and Llama are intended to cover a broad 
range of applications and use-cases, whereas  
fine-tuned models are usually intended to cover a 
specific type of content, domain, or use-case. 

With the training and fine-tuning of models being 
a laborious process that not only requires extensive 
training data but is also computationally expensive to 
an extent that raises sustainability concerns, it is 
necessary to keep in mind the issue of the 
computational and energy cost in relation to the benefit 
of these models. To justify their existence, specialized 
models that are based on fine-tuning existing  
general-purpose large language models should add 
significant value through their use, and recognizably 
improve results over what can be achieved with 
general-purpose language models using strategies such 
as prompt-engineering. 

This paper takes a first step into addressing this 
topic by looking at some of today’s most popular 
general-purpose large language models and evaluating 
aspect summaries that are created using  
prompt-engineering to those created by fine-tuned 
models. For this, a sample of scientific papers 
contained in the dataset FacetSum [1] is used as input 
for the language models with a number of different 
prompts for summaries of used methods, research 
questions, and main contribution of the paper. The 
resulting summaries are scored against the reference 
summaries contained in the datasets using Rouge and 
compared against the results from the fine-tuned 

BART-Facet model [1] and E2E [5] regarding the 
resulting scores and summary length. 

In the following sections, this paper first gives a 
brief overview of related work in the field of aspect 
summarization, particularly relating to available 
datasets and fine-tuned models, followed by a 
description of the methodology utilized in the course 
of the research. Subsequently, the results are presented 
and discussed, with the conclusion wrapping up the 
paper and proposing some avenues for future work. 

 
 
2. Related Work 
 

Automatic text summarization is a problem that has 
led to a multitude of approaches, with the most recent 
being mostly focused on LLMs. Although general 
summarization of text is well-researched, aspect 
summarization – the summarization of text for a 
specific aspect, e.g. the methods utilized in a scientific 
article – has been less widely discussed. Both  
large-scale datasets for this task, specifically in the 
scientific domain, as well as specifically fine-tuned 
models, are challenging to source. 

In 2021, FacetSum [1] was published as a dataset 
that had specific tags for “Purpose”, “Method”, 
“Findings”, and “Value”, focusing on the 
summarization of scientific articles. As the authors 
stated, large-scale datasets before this tended to be 
limited in respect to the number of aspects they 
covered. At the same time, the authors fine-tuned the 
BART [2] model to summarize text separately for each 
facet. In the same year, the WikiAsp [3] dataset was 
published. Although similarly focusing on aspect 
summaries, this dataset consisted of Wikipedia 
articles, with aspects created according to common 
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section titles. OASum [4], another dataset based on 
Wikipedia articles, was published in 2023. With 
aspects such as “History”, “Career”, “Background”, 
and “Geography”, it likewise sourced them from 
section titles. 

Finally, ACLSum [5], a dataset consisting of 
scientific papers from the Natural Language 
Processing (NLP) field, was published in 2024. By 
utilizing the work of domain experts, the dataset was 
created without the use of automatically created 
summaries and specifies the aspects “Challenge”, 
“Approach”, and “Outcome”. In the same paper, the 
authors fine-tuned the Llama2 model using full 
documents as input, with E2E showing  
promising results. 

Beyond these fine-tuned models, aspect 
summarization is mostly found in other domains, such 
as summarization of reviews [6] and news articles [7]. 
 
 
3. Methodology 
 

As apparent from the related work, the selection of 
one or more datasets, as well as fine-tuned models to 
use for reference presented a challenge in this research. 
Due to the focus on scientific articles, which typically 
adhere to a specific structure and require densely 
concentrated information, datasets drawing from 
Wikipedia or news articles could not be considered. 
Both the FacetSum and ACLSum dataset match the 
requirements, although they consist of  
different aspects. 

For this research, a sample of 30 papers from a 
variety of domains was taken from the FacetSum 
dataset for the experiments. At this step, the number of 
evaluated papers was limited due to the computational 
cost involved if using the entire dataset. Results from 
the ACLSum paper were later used in the comparison 
of Rouge F1-scores. Table 1 shows which 
considerations were taken to be able to compare results 
between the different datasets, as well as which 
wording was chosen to represent the aspect in the 
query to the language models. 
 
 

Table 1. Equivalent aspects between the two datasets 
FacetSum, and ACLSum as well as the term used  

in the query. 
 

Query term  FacetSum ACLSum 
Research purpose Purpose Challenge 
Research design/ 

methodology/approach 
Method Approach 

Main findings Findings Outcome 
- Value - 

 
For the comparison, some of the most commonly 

freely available models were used for summarization: 
GPT-3.5 [8], DeepSeek V3 [9], Mistral’s Le Chat [10], 
as well as Meta- Llama-3.3-70B-Instruct [11]. The 
Llama model, specifically, was tested using 

HuggingChat [12], as well as Poe [13]. For all other 
models, the dedicated browser versions were used. 

The use of the FacetSum dataset for the 
experiments allowed for the comparison of generated 
results to the given results to minimize the opportunity 
for subjective reasoning in the evaluation process. The 
dedicated paper [1] reported full results regarding 
Rouge-1, Rouge-2 and Rouge-L scores, which were 
compared to the results gained through the use of the 
general-purpose LLMs. In both experiments, as well as 
ACLSum’s E2E approach, the full document text was 
used as input. 

Results were gained through the use of multiple 
iterations of prompts. Using another small sample of  
5 papers, as well as their aspect summaries as target 
summaries, different wordings for the aspects were 
tested, as well as small changes in the prompt wording 
until the content from the reference summaries was 
represented by the generated summaries. The final 
term used for each aspect is reported in Table 1. 

Occasionally, the LLMs added conversational text 
or concluding remarks. Any additional text such as 
“Let me know if you want to know more” or text 
starting with phrases such as “Overall” or “In 
conclusion” after the actual aspect summaries was 
removed and discarded. 
 
 
4. Results and Discussion 
 

As previously explained, different prompts were 
selected for trial, varying in results. The creation of the 
prompts was done manually, with adjustments 
according to flaws in the results they gave. The final 
prompt contained a sentence setting the role of the 
reader as a scientist as this was found to improve 
results. The final prompt was the following: 

We are scientists using a scientific paper for 
literature research. Summarize the content of this 
paper specifically and only in regard to "research 
purpose", "research design/methodology/approach", 
and "main findings of paper", respectively. 

During the calibration period of the prompt, the 
most common issue was the inclusion of an 
introduction and conclusion, as well as excessive 
summary length. Specifically stating the requirement 
for only the given aspect summaries did not reliably 
prevent this. As such, this part of the text was discarded 
as it was not part of the aspect summary sections. 

In general, the prompt given above returned 
promising results for all models and gave clearly 
delineated summaries for each aspect. However, the 
average summary length per aspect summary differs 
significantly by LLM and in comparison, to the 
reference summary, as well as within each category. 
Table 2 shows the average number of characters per 
summary, as well as the standard deviation. While 
“Purpose” and “Design” summaries are of similar 
lengths to the reference summaries for most models, 
“Findings” results in much longer summaries for all 
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but Llama. DeepSeek, particularly, tends to give 
significantly longer answers in all categories. 
 
 

Table 2. Average summary lengths and their standard 
deviation per aspect for each LLM. 

 

 Average summary length in 
characters (stdev) 

Model  Purpose Design Findings 

Reference 
354.33 

(148.61) 
341.23 

(133.64) 
415.13 

(175.87) 

GPT 
380.80 
(76.48) 

474.90 
(166.30) 

770.67 
(225.41) 

DeepSeek 
596.30 

(130.01) 
868.13 

(207.85) 
1656.43 
(403.81) 

Mistral 
467.60 
(89.28) 

541.53 
(159.64) 

1397.20 
(309.38) 

Llama 
301.90 
(98.88) 

404.33 
(261.37) 

589.70 
(330.65) 

 
However, even within the reference summaries, 

standard deviations are significant. This can be 
explained by the manual creation of the summaries by 
the authors themselves, as they are written during the 
publication process. As such, every author has 
different expectations and styles for this text, both 
regarding length and level of detail. Due to the size 
dataset needed for fine-tuning a language model, this 
is a natural limitation that is unlikely to be resolved if 
the target summary is required to be manually created. 

As the authors should be the most reliable source 
regarding the most important points of their paper, this 
is already the ideal situation, with knowledge of what 
the authors, themselves, consider the most important 
takeaways regarding a specific aspect. While this 
means that it is reasonable to assume that the 
summaries are factually correct, their length is highly 
variable. With most language models defaulting to 
longer answers, this may have an effect on automatic 
evaluation scores, necessitating human evaluation for 
results that reliably reflect human opinion. 

Results during the experiments showed that 
particularly for “Findings”, more specifications in the 
prompt may be needed to produce shorter summaries, 
as the level of detail was excessive in a number of 
results. For this aspect summary, the standard 
deviation was also significantly larger for all models 
except GPT when compared against that of the 
reference summary. 

To further evaluate the generated aspect 
summaries, Rouge-1, Rouge-2, and Rouge-L  
F1-scores were calculated. Table 3 shows the averages 
for each model, as well as the standard deviation in 
parenthesis. For BART-Facet, the model fine-tuned on 
the FacetSum dataset [1] and E2E, the Llama model 
fine-tuned on the ACLSum dataset [5], no standard 
deviations were given in the respective papers and they 
are thus missing in the table. 

Once again, there was significant standard 
deviation in the scores. Due to missing reference 
values from the previous results, it is difficult to draw 
conclusions and comparisons with them. However, the 

results indicate that general-purpose models can reach 
similar or even better results than the mentioned  
fine-tuned models with inputs of the full paper text. 
 
 
Table 3. Average Rouge F1-scores calculated for the aspect 

summaries compared against the reference summaries. 
 

Purpose 

Model 
Rouge-1 
(stdev)

Rouge-2 
(stdev) 

Rouge-L 
(stdev) 

BART-Facet 48.65  27.72 42.55 
E2E 30.06 11.33  23.87 

GPT 
55.04 

(11.15)
30.09 

(14.74) 
42.13 

(14.75) 

DeepSeek 
51.53 

(11.64) 
33.78 

(14.67) 
40.16 

(14.23) 

Mistral 
53.39 

(12.61) 
31.69 

(15.69) 
39.81 

(16.09) 

Llama 
41.35 

(15.54) 
14.98 

(18.37) 
29.95 

(18.20) 

Design 

BART-Facet 33.49  11.01  28.07  
E2E 44.01  23.03  38.58  

GPT 57.16 
(15.26) 

34.02 
(18.76) 

45.16 
(18.26) 

DeepSeek 
41.66 

(12.91) 
21.13 

(13.05) 
30.16 

(12.76) 

Mistral 
52.36 

(13.14) 
30.22 

(13.34) 
40.44 

(13.97) 

Llama 
33.91 

(13.21) 
11.79 

(14.26) 
24.20 

(12.74) 

Findings 

BART-Facet 34.46  10.49  28.98  
E2E 32.85  13.39  27.23  

GPT 49.15 
(18.19) 

27.50 
(17.51) 

38.08 
(17.48) 

DeepSeek 
29.09 

(10.62) 
13.16  
(8.95) 

19.99 
(8.38) 

Mistral 
34.86 

(11.87) 
17.48 

(10.09) 
25.04 

(10.07) 

Llama 
35.81 

(10.36) 
11.58  
(9.42) 

23.04  
(7.85) 

 
For Bart-Facet, the reported results were generally 

better when the input was constrained to only the 
introduction and conclusion (with a Rouge-L score of 
43.47/29.07/30.97 for “Purpose”, “Method” and 
“Findings”, respectively). Considering this score, 
BART-Facet outperforms all but GPT’s results from 
this experiment for “Purpose”, although all but Llama 
result in higher scores for “Method” (/”Design”). For 
“Findings”, only GPT outperforms the result. This 
suggests that it may be beneficial to use only 
Introduction and Conclusion as input for the summary 
creation. Doing so would possibly increase the scores 
shown in Table 3 further, as they did for Bart-Facet [1]. 

Although GPT consistently performed best for 
“Design” and “Findings”, it was outperformed by 
Llama when it came to matching the length of the 
reference summaries, and while Llama performed 
significantly worse than all other models other than 
BART-Facet for “Design”, it reached average scores 
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for “Findings”. E2E, which was based on a previous 
version of Llama, performed third-highest for 
“Design”. 

Finally, both Mistral and DeepSeek returned 
impressive results for “Purpose” and “Design”, but 
scored significantly lower than GPT’s results for 
“Findings”. This coincides with a considerably higher 
wordcount of Mistral and Deepseek’s summaries for 
“Findings”. A specification for maximum summary 
length could thus particularly influence their scores in 
this aspect in a positive way. 
 
 
5. Conclusion and Future Work 
 

This paper evaluated the use of general-purpose 
LLMs in comparison to two specifically fine-tuned 
models for the use in aspect summarization for 
scientific articles. The results showed that although 
results showed high variance in length and  
Rouge-scores, some general-purpose language models 
can reach comparable results with well-tailored 
prompts. 

This result indicates that comparisons between 
fine-tuned models and their base-models must be 
accompanied with comparisons to popular  
general-purpose LLMs to show that the increased 
quality justifies the additional time and energy that is 
spent on fine-tuning models. It suggests that prompt 
engineering has a significant influence on result 
quality that can potentially be used to make up for the 
lack of task-specificity of a model. 

However, while the results presented in this paper 
are promising, certain limitations are present. One of 
the referenced fine-tuned models was published in 
2021 [1] and as such a fine-tuned version of a more 
recent base model may produce improved results. 
Similarly, E2E [5] is based on Llama 2, a model that 
has since likewise been replaced by more recent 
versions. Furthermore, although this paper supports the 
critical evaluation of fine-tuned models versus the use 
of prompt engineering, future work is needed to extend 
the experiments with a larger dataset for the 
comparison of the summaries. Similarly, further 
models should be considered such as Claude  
and Gemini. 

Finally, the comparison of a fine-tuned model with 
the base model it is based on, once again taking care to 

optimize the prompt for the task, may allow for further 
conclusions regarding prompt-engineering’s impact on 
the quality of results. 
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Summary: Natural human hand movements are a topic of current research. Tools have been used to analyze surface 
electromyographic signals -sEMG- associated to each movement and their main characteristics. The motivation of this work 
is to show a systematic study of the possible mathematical relationships between the velocity exerted in basic human hand 
movements and the electrical activity of the muscles that produce the movements, based on surface electromyography. This 
study evaluates 14 healthy subjects and six types of movements (pronation, supination, ulnar deviation, radial deviation, flexion 
and extension -84 SEMG and velocity recordings). The work is divided into 2 parts. First, a model in the Laplace domain is 
proposed that relates these two variables (velocity and sEMG) using the sEMG signal envelope. Secondly, a linear model (time 
domain) focused on predicting the velocity of each movement is obtained. The results show strongly linear models in the time 
domain, with high differences between each type of motion, high coefficients of determination (0.95 on average) and an MSE 
of 21.18 %. In the Laplace analysis, second order models predominate with best fit characteristics of 82.45 % on average for 
all analyzed motions. The velocity response characteristics show relatively low response times, but high steady-state setpoint 
tracking errors. 
 
Keywords: Human hand motions, Linear models, Dynamic response, Velocity of movements, sEMG. 
 

 
1. Introduction 
 

Many previous works have sought to relate the 
surface electromyography (sEMG) signal to the 
characteristics (velocity and force) of the kinematics of 
human hand motion [1-3]. Others have considered the 
problem only as a classification issue with good results 
[4-6]. Techniques for feature extraction from surface 
electromyography signals have been employed to 
determine the type of motion, both in the time domain 
and in the frequency domain [7-13]. However, the 
research is still under development. Looking for 
human hand movements to approximate natural 
movements, scientists have employed different 
alternatives that allow relating force and velocity to the 
electrical activity of the muscles [14-18]. However, the 
great majority of works are related to the classification 
of the type of movement and not to its attributes. The 
contribution of this systematic work is directed at 
relating the velocity exerted in six human hand 
movements (pronation, supination, flexion, extension, 
ulnar deviation and radial deviation) and the sEMG 
signals obtained in the proximal third of the forearm in 
14 healthy subjects. The paper is divided into three 
main parts [19-20]. 

The methodology used explains how the 
information was collected, the treatment performed to 
the velocity and electromyographic signals to obtain 
their envelope. Also, the modeling performed in the 
frequency domain where basic first, second and third 
order process models were used. Additionally, the 
modeling performed in the time domain. Then in the 

results section you can see the model fitting error 
calculated as Mean Squared Error (MSE) for the 
models in frequency in each order. It will also be 
possible to observe the performance evaluation of the 
models calculated in open loop to estimate response 
times and steady state errors from the calculated 
models. Another relevant aspect that will be evidenced 
in the results is the possible linear relationship in the 
time domain reporting an overall MSE of 21.18 %. 
Finally, the section on conclusions derived from  
the work. 
 
 
2. Materials and Methods 
 
2.1. Experimentation and Data Collection 
 

The database has 84 velocity and sEMG recordings 
taken from 14 healthy subjects. We calculated the 
sEMG envelope using moving average envelopment. 
The following movements were studied:  
flexion-extension, supination pronation, ulnar 
deviation-radial deviation. 

Research ethics approval was obtained by the 
ethical approval to report this case obtained from  
* Ethics Committee for Research, Bioethics and 
Scientific Integrity – CEI Resolución 02-474 de agosto 
4 del año 2021/ FIN 11-15. 

The process shown in Fig. 1 was used, using a 
sampling rate of 960 frames/s to calculate the  
velocity profile. 
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Fig. 1. Sequence to obtain the velocity profiles. 
 

We obtained the sEMG envelope using a 2-sample 
moving average over 20 ms windows. Fig. 2 shows an 
example of the similarity of both signals (sEMG 
envelope and velocity profile). 

 

 
 

Fig. 2. Top panel sEMG envelope, bottom panel velocity 
profile in the flexion-extension motion. 

 
 

2.2. Complex Frequency Domain Modeling 
 

The models were obtained using the parametric 
system identification technique [17]. 

A general approximation model was proposed as in 
equation (1). 

 

(ݏ)ܩ  	= 	݇ (ଵା்௭∗௦)ష∗ೞ(ଵା்ଵ∗௦)(ଵା்ଶ∗௦)(ଵା்ଷ∗௦), (1) 

 
where K is a Gain, Tz is a Time from zero, Td is a 
Delay time, Tp1 is the Pole 1 time, Tp2 is the Pole 2 
time, Tp3 is the Pole 3 time. 

Note: The predominant model for the present study 
contemplates a second-order structure. 
 
 
2.3. Statistical Analysis 
 
In order to obtain a general model, the model 
parameters were averaged according to equation (2). 
 

ᇱݔ  	= 	∑ ே(݊)ݔ ୀ	ଵܰ  (2) 

 

Dispersion was analyzed by calculating the 
standard deviation according to equation (3). 

 

ߪ  = ට∑ (௫()ି୶ᇱ)మಿ స భேିଵ , (3) 

 
and the coefficient of variation (CV). According to 
equation (4). 
 

ܸܥ  = ௫ᇱఙ ∗ 100	%  (4) 

 
2.4. Estimation of the Model Performance 
 

For performance estimation, the settling time, as an 
estimator of the model response speed, and the  
steady-state error at a step input were calculated to 
evaluate the tracking capability to the setpoint. For the 
settling time, the 2 % criterion was used [17, 18]. 
 
2.5. Time Domain Modeling 
 

We proposed a linear relationship between the 
velocity and the sEMG tone signal (envelope) using 
the proposed model according to equation (5), where a 
and b are model parameters and t is the time variable. 
In Fig. 3, you can see the possible relationship between 
the velocity profile and the envelope sEMG signals. 

 
(ݐ)݈ܸ݀ܽ݀݅ܿ݁  = ܽ ∗ ௦ா(௧)݊ܶ + ܾ (5) 

 
We report results as interquartile ranges of a and b. 

We calculated the goodness of fit of the model from 
the coefficient of determination R2, the results in  
Table 5. Curve fitting was applied for each subject and 
for each movement. 
 
 
3. Results 
 

The results are divided into 3 parts. First the 
modeling results in the Laplace domain. Second, the 
model performance results (response speed and 
tracking capability via steady state error). Finally, the 
results of the linear model in the time domain. 
 
3.1. Complex Frequency Domain Modeling Results 
 

As explained above, the general model proposed is 
the one corresponding to equation 1. Tables 1, 2 and 3 
show the results for each order (1, 2 and 3) 
respectively. 

From Tables 1-3 it can be seen that the best 
performance with respect to the percentage of fit, 
standard deviation and average MSE in all movements 
is obtained for order 2. 
 
3.2. Performance Analysis of the Obtained Model 
 

Taking into account that the best fitting behavior of 
the model was obtained for a 2-pole system (second 
order). For the analysis, second order models were 
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taken for each movement and settling times and steady 
state error were estimated for a unitary step input. This 
hypothesis seeks to estimate the performance that the 
system composed of the set of soft tissues together with 
the bone structure would have to respond to a brain 
order of abrupt change in the speed of each movement. 
An example for the pronation movement can be seen 
in Fig. 3. 

 
 
Table 1. Comparison of the models obtained for first order 

in the different movements analyzed. 
 

Movement % error 
Standard 
deviation 

Pronation 21.83 9.3 
Supination 19.04 7.5 
Flexion 19.95 9.4 
Extension 22.87 11.2 
Radial Deviation 18.32 4.3 
Ulnar Deviation 17.79 7.1 
Average MSE 19.95 % 8.13 

 
Table 2. Comparison of the models obtained for second 

order in the different movements analyzed. 
 

Movement adjustment 
Standard 
deviation

Pronation 21.37 6.4 

Supination 17.35 6.8 
Flexion 16.17 5.4 
Extension 22.47 8.8 
Radial Deviation 18.14 4.6 
Ulnar Deviation 15.79 9.8 

Average MSE 18.55 % 6.97 

 
Table 3. Comparison of the models obtained for third order 

in the different movements analyzed. 
 

Movement % adjustment Standard 
deviation

Pronation 29.18 27.1 

Supination 24.93 5.7 
Flexion 14.32 8.4 
Extension 21.97 12.7 
Radial Deviation 18.88 7.7 
Ulnar Deviation 19.77 17.9 

Average MSE 21.51 % 13.25 

 
The summary results are shown in Table 4. 

 
 

Table 4. Performance estimation results  
for the second-order model. 

 

Movement 
Orden 

2 (ts, ESS) [s,%]
Pronation [1.5,47] 

Supination [2.1,72]

Flexion [1.3,14]

Extension [2.3,27]

Radial Deviation [4.15,22]

Ulnar Deviation [6.4,38] 

Average [2.96, 36.5] 

 

A good performance is observed in terms of 
response speed, as a function of settling time, however, 
the average error of 36.5 % shows the prevailing need 
for adaptation to correct this error. That is to say, the 
calculated models have an open-loop behavior with 
high setpoint tracking errors, this would be an 
impediment for the development of an arm that 
replicates natural movements. A relationship in the 
time domain is then sought in order to mitigate this in 
the next section. 
 

 
 
Fig. 3. Response to a unitary step-type input, for a healthy 
subject, in the pronation movement. A settling time  
of 0.826 (s) and a final value of 0.0376 are observed, 
showing a steady state error of approximately 96.24 %. 
 
 
3.3. Time-domain Modeling Results 
 

Taking into account the results obtained in the 
complex frequency domain, a linear temporal 
relationship as in equation (5) is sought. A scatter plot 
relating the sEMG signal envelope to the velocity 
profile for a healthy patient in the flexion movement 
can be seen in Fig. 4. 
 

 
 

Fig. 4. Linear relationship between the velocity  
of the bending movement and the sEMG envelope  

for the same movement, for a healthy patient. 
 

Table 5 shows the results as interquartile range and 
median of the model parameters of equation (5) and the 
coefficient of determination. 
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Table 5. Summary of results of the linear regression models 
for each type of movement. 

 

Movement 
a 

median 
(IQR) 

b 
median 
(IQR) 

R2 

Pronation 
4536 

(4448, 4624)
23.93 

(19.54, 28.31) 
0.9092 

Supination 
0.451 

(0.445, 0.458)
106.3 

(103.9, 108.7) 
0.9468 

Flexion 
10.18 

(10.08, 10.29)
-51.1 

(-53.9, -48.3) 
0.9714 

Extension 
1056 

(1044, 1069)
-118.1 

(-122.4, -113.9) 
0.9648 

Radial 
Deviation 

3.32 
(3.28, 3.36) 

49.88 
(48.87, 50.88) 

0.9711 

Ulnar 
Deviation 

5.47 
(5.39, 5.56) 

 -70.1 
(-72.8, -67.5) 

0.9369 

 
We used the MSE as a metric to estimate the model 

error in the validation process. Fig. 5 shows an 
example (pronation) of the output model behavior and 
compares it to the original measured tone. We obtained 
MSE globally for all samples (84 records and signals 
from the output model). The MSE was 21.18 %. 
 

 
 
Fig. 5. Comparison of model output (red color) and actual 

pronation movement velocity for a healthy subject. 
 
 
4. Discussion 
 

There are methods that could reduce the error of the 
response speed of the second-order model. One of 
them is the use of adaptive filters, which allow the 
system parameters to be dynamically adjusted 
according to variations in the sEMG signals, thus 
improving the accuracy of the model. In addition, the 
incorporation of feedback loops can be crucial, as these 
systems continuously compare the model output with 
the desired reference, allowing real-time corrections 
and significantly reducing error. These strategies not 
only optimize the stability and response speed of the 
system, but also increase its robustness to external 
disturbances and variations in model parameters, 
achieving greater accuracy and efficiency in hand 
motion control based on sEMG signals [21]. 

On the other hand, due to the variability between 
subjects, the creation of a universal model is not 
simple, nevertheless, for practical applications it could 
be calibrated for each subject. Additionally, a universal 

model could be generated with the use of machine 
learning and specific models for different  
subjects [22]. 

Another valuable prospect for future research could 
be deep learning approaches, such as recurrent neural 
networks (LSTMs) and convolutional neural networks 
(CNNs), which are able to learn more complex 
representations and capture temporal and spatial 
patterns in sEMG signals, which may result in 
increased accuracy and robustness in hand velocity 
prediction. The integration of these advanced 
approaches could significantly improve the accuracy 
and efficiency of hand motion control [21], providing 
a solid foundation for future research and applications 
in rehabilitation and human-machine interfaces. 

Finally, the robustness of the models in the time 
domain can be assessed through the Cross-validation 
technique [23], which allows to observe if the error is 
consistent and if the model is reliable. 

 
 

5. Conclusions 
 

From the results obtained with the model in the 
complex frequency domain, it is observed that the best 
behavior occurs for systems of order 2. When 
analyzing the performance of the model obtained, it is 
observed that the steady state errors, in the presence of 
an abrupt change input, are very high on average. This 
indicates that it requires adaptation, which could be 
corrected in future research by adapting a control 
action to reduce this. Nevertheless, the response times 
are below 3 seconds. 

On the other hand, the coefficients of variation 
when assessing the fit of the 14 subjects are high. 
Therefore, the idea of generalization of the model is 
still low. Thus, the methodology applied here should 
be performed for each subject separately. Also, the 
models calculated by this strategy present high errors 
and adaptation times that, although low, in the context 
of a motion control can be high, so that a control 
strategy should be integrated to mitigate these 
deviations. 

Finally, the relationship between surface 
electromyography tone and velocity profiles in the 
time domain is strongly linear. However, there is a 
scattered behavior of the linear model parameters. In 
addition, the difference between subjects and type of 
movement generates different parameters in each 
model with considerable scatter. Therefore, the 
methodology must be used in each situation, which 
makes it difficult to apply a general model in hardware 
that replicates the velocities estimated from the sEMG 
treatment. However, the overall MSE has not been 
high and could be compensated with a control system 
that rejects these uncertainties. 
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Summary: This study presents the development of a Graphical User Interface (GUI) using MATLAB, incorporating Curve 
Fitting and GUIDE tools to analyze volumetric capnography (VC) data. The primary objective is to estimate essential 
respiratory parameters, including anatomical dead volume (VDaw) and end-expiratory CO2 volume (ETCO2), by 
implementing Fowler's method for volumetric capnography analysis. The proposed GUI automates the graphing process and 
ensures accurate parameter identification from a patient database, offering a valuable resource for clinical applications. 
Volumetric capnography is a non-invasive technique used to monitor ventilation efficiency and pulmonary function. In this 
study, the developed software was applied to a dataset consisting of previous patient measurements, effectively generating 
automatic capnograms and extracting key physiological variables. The methodology involved signal preprocessing, curve 
fitting using the Levenberg-Marquardt algorithm, and parameter estimation via numerical integration techniques. Results 
demonstrated the GUI's effectiveness in delivering reliable VDaw and ETCO2 measurements. The interface’s user-friendly 
design allows clinicians to intuitively analyze capnograms and monitor respiratory status in real time. This application has 
significant potential in enhancing decision-making during mechanical ventilation management and cardiopulmonary 
resuscitation scenarios. Future work will focus on refining the algorithm's robustness, reducing noise interference, and 
expanding the tool's capabilities for real-time monitoring in intensive care units. The developed software represents a step 
towards advanced respiratory diagnostics and improved patient outcomes. 
 
Keywords: Volumetric capnography, CO2 volume, Cardiopulmonary resuscitation, Fowler's method, Exhalation. 
 

 
1. Introduction 
 

The pandemic caused by the coronavirus generates 
in people acute respiratory infection causing 
respiratory distress being one of the most common 
complications and if allowed to progress can produce 
respiratory arrest in patients [1]; from the World 
Health Organization (WHO) emphasis is placed on 
improving the processes of mechanical ventilation and 
CPR maneuvers in order to mitigate human  
losses [2-5]. 

CPR maneuvers are used to improve patient 
prognosis and are widely used in critically ill patients 
during the pandemic [6, 7], is performed in cases where 
the endotracheal tube (ETT) is not in the correct 
position, making it impossible for air to enter the lungs 
or even in the correct position of the ETT, sometimes 
the frequency and volume of ventilations is not the 
required one; likewise, assisted ventilation is not 
applied with quality so that the patient can be 
stabilized. [8-10], therefore, these variables must be 
monitored and other variables must be added to 
guarantee the quality of ventilation and compressions 
to the patient [11]. 

Currently, volumetric capnography provides health 
professionals with tools that monitor information on 
the distribution of air entering the airways, helps to 
calculate the volume of carbon dioxide in a tidal 
volume [12], being very useful to assess the 
relationship between ventilation and perfusion, 

allowing the detection of different states or clinical 
activities such as lung collapse [13], acute respiratory 
distress syndrome, detection of re-inhalation, 
metabolic activity in patients with assisted ventilation 
or the return of spontaneous circulation, an important 
factor during the application of CPR maneuvers, and 
thus determine the effectiveness and quality of 
ventilation [14-17]. 

The methods used relate the theoretical concepts of 
volumetric capnography, Fowler's method for 
capnography analysis, mechanical ventilation, 
cardiopulmonary resuscitation maneuvers, MATLAB 
software programming language, curve fitting and 
numerical integration techniques. 

The development of this Graphical User Interface 
[18] in MATLAB software will allow to obtain 
volumetric capnographies automatically, which will 
provide preliminary information of the patients 
according to their shape and values. It will also apply 
Fowler's method to each exhalation individually 
extracting information regarding the anatomical dead 
volume and the CO� volume at the end of the 
exhalation, presenting an average of these values at the 
end of the analysis of the whole signal [19]. 
 
 
2. Signal Reception with Less Interference 
 

The complete signal obtained from the database is 
plotted, generating on its right side a signal with 
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distortion due to the chest compressions applied to the 
patient (see Fig. 1), the cleanest section observed in  
Fig. 2 is chosen as a reference. 
 

 
 

Fig. 1. Interfering signal. 
 

 
 

Fig. 2. Interference-free signal. 
 
 
3. Curve Fitting 
 

To perform the curve fitting, the data that compose 
the expirations are separated individually to be 
introduced in the Curve Fitting tool of MATLAB, 
which generates the individual expiratory curve shown  
in Fig. 3. 
 

 
 

Fig. 3. Individual exhalation 
 

The generated signal contains noise that does not 
allow to obtain a clean signal; to improve the signal 
there are several methods to calculate the anatomical 
dead space from the volumetric capnography [20], 
when this mathematical model is obtained at a general 
level, it is taken to the Curve Fitting tool with the signal 
data, where the coefficients of the model that best fit 
the experimental data are found (see Fig. 4). 

 
 

Fig. 4. Curve fitting result. 
 
 
4. Areas P and Q 
 

One of the methods for the analysis of volumetric 
capnographies and the identification of dead 
anatomical volume is the Fowler method, which 
consists of equating the areas of volumetric 
capnographies P and Q. 

The area Q is made by means of the function and 
its respective coefficients that describe the signal, 
applying an integration defined by the lower limits will 
be the beginning of the expiration and the upper limit 
will be the variation to equalize the areas; for the area 
P is calculated the result of the linear regression of data 
that compose the middle zone of phase III of the 
expiration and the integral of the model of the  
signal function. 

 

 
 

Fig. 5. Areas P y Q. 
 
 
5. Results 
 

By implementing the curve-fitting method, based 
on the Levenberg-Marquardt algorithm [21, 22], 
parameterized by the chosen VC mathematical model, 
to the experimental data of the five patients, it was 
observed that the coefficients of the characteristic 
equation reflected favorable goodness-of-fit values, 
according to the data of "Percent of confidence 
bounds", "Adjusted R-square" and root mean square 
error (RMSE), given by the MATLAB software. 

The summary of the goodness of fit values, 
obtained through the curve fitting tool from 
MATLAB, for each patient, is shown in Table 1. 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

178 

Table 1. Results curve fitting. 
 

Patient/
Episode 

% Confidence Adjusted R² RMSE 

1 95 % 0.997 1.23 
2 95 % 0.9994 0.6026 
3 95 % 0.9995 0.6067 
4 95 % 0.9964 0.2551 
5 95 % 0.9943 0.2437 

 

 
 

Fig. 6. Curve fitting patient 1. 
 

 
 

Fig. 7. Curve fitting results patient 1. 
 

 
 

Fig. 8. Calculation and averaging of the values  
of the selected exhalation. 

 
At the end of the development of the interface, the 

correct functioning of all the actions included in the 
program applied to the signals of all the patients and 
their respective exhalations was verified. 

The average data of anatomical dead volume and 
end-expiratory volume obtained from analyzing each 

of the six expirations of each patient, using this 
computational tool, are shown in Table 2. 

 
 

Table 2. Average Data Obtained. 
 

Patient 
Average VDaw 

(ml) 
Average ETCO2 

(mmHg) 
1 133.41 42.623 
2 129.56 52.425 

3 128.67 56.426 
4 127.65 9.6 
5 146.84 7.4 

 
 
6. Conclusions 
 

The structure in which the software was designed 
and the Graphical User Interface in MATLAB allows 
a dynamic use of the program, providing an orderly 
access to the information of each patient, achieving the 
analysis of each signal very intuitively. The general 
model of the function used in the curve fitting 
algorithm does not fit well in some signals with peak 
values of CO� Volume in phase III of expiration, this 
impacts the accuracy of the data. For continue 
advancing in the development of tools that allow the 
study of volumetric capnographies and to make the 
leap from off-line analysis to on-line analysis, it is 
necessary to deepen in the design and application of 
filters that eliminate interferences in the input signal. 
 
 
7. Limitations 
 

This interface performs signal analysis offline. To 
enhance its clinical utility and enable real-time 
application, future versions could incorporate modules 
for real-time data acquisition and processing from 
ventilators or capnometers. Such functionality would 
allow healthcare professionals to make faster and more 
informed decisions during procedures like CPR. 

A notable limitation of this study is the use of only 
five patient datasets. However, it is important to 
emphasize that this work serves as a pilot test to assess 
the feasibility of the proposed interface. Additionally, 
acquiring datasets with concurrent capnography and 
volume information is challenging due to the limited 
availability of such records. Future research should 
consider including a larger and more diverse patient 
sample to strengthen the validity of the results. 

Furthermore, this study did not conduct a direct 
comparison with commercial capnography software. 
This decision was primarily influenced by the 
proprietary nature and high cost of existing 
commercial solutions. Future studies could address 
this gap by performing comparative evaluations with 
commercial tools to validate the system’s performance 
and assess its potential for clinical implementation. 

Another key challenge in interpreting capnography 
signals during CPR is the presence of artifacts caused 
by chest compressions. Previous studies have shown 
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that artifacts are more prominent during manual 
compressions, whereas mechanical systems produce 
significantly fewer disturbances [11]. To mitigate this 
issue, future implementations could integrate advanced 
filtering techniques, such as wavelet-based noise 
removal or adaptive filtering. 

Finally, while the proposed curve-fitting approach 
demonstrated good performance in the conducted tests, 
its generalizability to larger patient populations may be 
limited. To reduce the risk of overfitting, it is advisable 
to explore alternative nonlinear models or apply cross-
validation techniques using additional datasets. This 
would provide a more comprehensive evaluation of the 
model’s robustness across different clinical scenarios. 
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Summary: This article presents an overview of deep learning applications to forecast the risk of flood disasters, aiming to 
minimize the damage caused by natural disasters. Natural disaster forecasting is a complex challenge, requiring the processing 
and analysis of large amounts of multi-source and multi-dimensional data. Recent studies have shown the superiority of 
machine learning models over traditional methods. Although there are many challenges, with the development of machine 
learning methods and digital data collection, we can build increasingly accurate models to forecast the risk of natural disasters, 
contributing to natural disaster prevention in Vietnam. 
 
Keywords: Artificial intelligence, Deep learning, Convolutional neural network, Weather forecasting science, Flood warning 
system. 
 

 
1. Introduction 

 

Floods are an annual natural phenomenon that 
causes severe damage to infrastructure, crops and the 
economies of countries around the world. Forecasting 
the risk of natural disasters is an important task to 
prevent and minimize the damage caused by natural 
disasters. Conventional models still have many 
limitations, as they require a large number of input 
parameters such as water levels, flow rates, 
evaporation, infiltration rates, soil moisture, etc. and, 
above all, require a lot of time for simulation. In 
addition, the creation, simulation and analysis of the 
results of physically based models require the 
involvement of experts in hydrology, hydraulics and 
related fields. Therefore, the practical application of 
these models for real-time flood warning is still 
limited. A future direction for hydrology and water 
resource management is to find methods to integrate 
traditional mathematical models with machine 
learning models to directly process, analyze and 
extract information from big data sources. Therefore, 
machine learning has attracted the attention of 
hydrologists in recent years and has been applied in 
various fields due to its ability to process large 
amounts of data. 

Deep learning is a technique that helps computers 
learn from data and can be applied to analyze the 
complex relationships between factors affecting 
natural disasters. Many studies on the application of 
machine learning in forecasting the risk of natural 
disasters have achieved remarkable results. Machine 
learning models have helped improve the accuracy and 
reliability of forecasting work in many places around 
the world. However, this work also poses many 
formulas, including choosing the appropriate 
influencing factors for the research area, the quality of 

the collected data, the quality of the machine learning 
model and practical application when conditions in the 
research area change. The main causes of floods are 
the impacts of climate change, human impact, and 
heavy rains that cause rapid increases in river water 
levels, making it difficult for water to drain [1]. Over 
the past 27 years, floods have caused the deaths of 
more than 175,000 people and caused severe economic 
impacts estimated at $2.2 billion globally [2]. Flood 
response is very important, especially in developing 
countries, where disaster prevention and mitigation 
measures are limited and flood plains are often densely 
populated [3]. Therefore, flood forecasting, water 
levels and river flows, especially on rivers with few or 
no hydrological monitoring stations, are very 
important in warning people and local authorities of 
floods. There are many projects and studies by 
domestic and foreign scientists applying physically-
based models with high accuracy to predict water 
levels, flow or inflows on rivers, reservoirs, etc. 
However, these types of models still have many 
limitations because they require a lot of input 
parameters in the model such as water level, flow, 
evaporation, infiltration rate, soil moisture, etc. and 
especially need a lot of time to simulate. Moreover, to 
set up, simulate and analyze the output results of 
physically-based models requires the participation of 
experts in the fields of hydrology, hydraulics, etc. 
Therefore, the practical application of these models in 
flood warning over time is not high. The future 
direction of hydrology and water resources 
management is to find a way to integrate water 
resources management based on traditional 
mathematical models into machine learning models to 
directly process, analyze and extract information from 
large data sources [4]. 
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Therefore, in recent years, machine learning has 
attracted much attention from hydrologists and has 
been widely applied in many fields thanks to its ability 
to manage large data. With the development of 
information technology, the terms machine learning or 
deep learning are no longer foreign to us. Deep 
learning used in many different professions and areas 
of society, including water management. The review 
articles have highlighted the development of research 
and the application of machine learning to problems in 
the field of water management and disaster risk 
management [5]. The current authors mostly focus 
more on explaining the algorithmic structure of 
machine learning rather than its applications, which 
makes it difficult to access for readers with a 
background in hydrology and water resources [6]. 
Deep learning used to predict the likelihood of flash 
floods [7, 8]. To build these models, information on 
geographical features, hydrometeorology, vegetation, 
and human activities in the study area used in the 
training data. This information includes elevation, 
slope, land morphology, rainfall, river flow, crop type, 
land use, resource exploitation activities, construction 
of structures, road construction, etc. at locations where 
flash floods have occurred in the past. The authors of 
the paper [9] presented a flood simulation. The 
accuracy of a data-driven model using machine 
learning in flood simulation evaluated by comparing it 
with traditional physics-based models. The study in [7] 
has given an overview of the strengths of some 
algorithms in machine learning in the problem of water 
level prediction. An overview of artificial intelligence 
(AI) models used in the field of flow prediction to 
contribute to the improvement and optimization in the 
management and operation of reservoirs proposed in 
the study [10-12]. 

2. Methodology 
 
Convolutional neural network-CNN is an artificial 

neural network architecture that is mainly used in 
processing spatial data such as images and videos. 
However, in the CNN model for the problem of 
building flood maps, the data is transformed into a 2-
dimensional input matrix, where the first axis 
represents time and the second axis represents the 
feature variables. The “Convolutional” layers in CNN 
are used to extract local features from the time series 
data. The “Pooling” layers help reduce the spatial 
dimension of the extracted features, while the 
“Activation” layer creates nonlinearity in the model. 
Finally, the “Fully Connected” layers are used to 
predict the next value based on the extracted features 
(Fig. 1).  

In deep learning problems in general and in flood 
forecasting problems in particular, simulating a 
machine learning model to predict the desired results 
will include 6 main steps. The steps to build a neural 
network include: 

Step 1: Normalizing the input data and splitting the 
data set. 

Step 2: Design of the network structure 
Step 3: Initialization of random values for the 

weights. 
Step 4: Perform the forward propagation phase 

through all layers of the network. 
Step 5: Calculate the error on the initial learning set 

and decide whether to continuelearning or not. If you 
continue, go to step 5, otherwise exit the loop. 

Step 6: Calculate the error at each node of each 
layer to update the weights and todetermine the 
constants. 

 

 
 

Fig. 1. Feature maps of Flood warning system. 
 
 
The dataset describes the flooding results simulated 

with a powerful integrated hydrodynamic modelling 
system for pluvial flooding and fluvial flooding in 

Vietnam. The pluvial flooding results simulated by 
HiPIMS are determined by the design rainfall in the 2, 
5, 10, 20, 50 and 100 year return periods, and the 
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fluvial flooding results simulated by HiPIMS are 
determined by the river water level boundary in 2011 
(Fig. 2) [13]. 

 
 

 
 

Fig. 2. Dataset of the flood. 
 

The initial data set is split into two component data 
sets, the first data set is used as input data for the 
prediction problem, while the second data set is used 
to check the results of the prediction method. In the 
prediction problem with CNN, the first data set is fed 
into the network for training. After each iteration of the 
training process, the network saves the weight matrix 
and compares the error of the network with the initial 
allowable error. The result of the training process is 
that the network model has been trained so that the 
main data set is the weight matrix with the smallest 
error. 
 
 
3. Analysis and Evaluate Experimental Results 

 
Some challenges in building and using deep 

learning models to predict the risk of natural disasters 
are as follows: 

Regarding data of influencing factors. This is a 
challenge related to the collection, pre-processing, 
selection and analysis of data related to natural 
disasters. The factors causing natural disasters are very 
diverse, from terrain, geology, weather to human 
impact and need to be selected appropriately for the 

research area. These data may be incomplete, 
inaccurate or inconsistent. The data needs to be pre-
processed to remove noise, omissions, duplication and 
reformatted to suit the machine learning model. 

Regarding models. This is a challenge related to the 
selection, training, testing and evaluation of machine 
learning models. There are many different types of 
machine learning models that can be used for 
forecasting the risk of natural disasters, but no model 
is optimal for all cases. Therefore, it is necessary to 
build different types of models and choose the best 
model. Deep learning models can be affected by 
problems such as overfitting, instability or lack of 
interpretability. 

First is the CNN implemented from scratch and 
then second is using the VGG-16 pretrained network. 
CNN without using pretrained network gives 91.5% 
accuracy and with VGG-16 gave 95.7% accuracy  
(Fig. 3). 

By using gate mechanisms to control the flow of 
information during the computation of hidden states, 
the LSTM model has significantly improved its ability 
to learn and understand long-term dependencies in 
sequential data compared to traditional RNN methods. 
These gates allow the LSTM to store important 
information from previous time steps and adjust the 
storage and transmission of information based on 
context. This capability enables the LSTM to 
effectively handle sequential data and model long-term 
dependencies within time series data. The CNN-LSTM 
model outperforms other AI models, with 94% of the 
predicted flow rate (Q) errors being below 0.05 m³/s, 
while the LSTM and DNN models have >98.7% and 
>91.4% of their predicted Q errors below 0.05 m³/s, 
respectively. This indicates that the CNN-LSTM 
model provides higher accuracy in predicting flow 
rates compared to the LSTM and DNN models. 

 
 

 
 

Fig. 3. Accuracy of training and testing process, (a) CNN with pretrained, (b) CNN with VGG-16. 
 

 
4. Conclusion 

 
Forecasting the risk of flood disasters is an 

important and urgent task to minimize human and 
property losses, as well as protect the environment and 
biodiversity. Machine learning models have been 
widely and effectively applied in disaster forecasting, 
using multi-source and multi-dimensional data related 
to the factors causing and influencing natural disaster 

events. Recent studies have shown that machine 
learning models have the ability to outperform 
traditional methods in forecasting the risk of natural 
disasters. However, there are still many challenges and 
potentials to improve and develop machine learning 
models in this field. With the advancement of 
computer science and data collection technology, we 
can expect that machine learning models will play an 
increasingly important role in forecasting and 
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responding to natural disasters in the future. Future 
implementation and monitoring. This is a challenge 
related to the application and maintenance of machine 
learning models to predict the risk of natural disasters 
for the study area in the future when data on 
influencing factors may change. Deep learning models 
may no longer be accurate when encountering new or 
different conditions from the training conditions. For 
example, factors causing natural disasters may change 
seasonally, yearly or due to unusual climate events. 
Deep learning models need to be updated and adjusted 
over time to reflect the change in factors causing 
natural disasters.  
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Summary: Non-contact physiological monitoring utilizing radar technology has emerged as a promising approach for 
assessing heart rate (HR) and respiration rate (RR). However, misalignment between radar and reference sensor signals can 
introduce significant measurement errors, compromising the accuracy and reliability of radar-derived physiological 
parameters. This study investigates the critical role of signal alignment in Frequency Modulated Continuous Wave (FMCW) 
radar-based monitoring and proposes a cross-correlation technique to synchronize radar and sensor data. Experimental results 
demonstrate and emphasize the importance of signal alignment as a prerequisite for the clinical reliability of radar-based 
monitoring. Future research directions include the incorporation of artificial intelligence- driven techniques to enhance signal 
synchronization and improve robustness across diverse patient populations. By ensuring precise signal integration, radar-based 
physiological monitoring holds significant potential as a viable alternative to traditional contact- based systems, contributing 
to the broader efforts of making non- invasive health monitoring more accessible, reliable, and clinically validated for various 
healthcare applications. 
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1. Introduction 
 

The field of life sciences is seeing increased interest 
in non-invasive monitoring of vital signs like heart rate 
(HR) and respiration rate (RR), given its potential use 
in clinical and remote health surveillance [3, 4]. For 
non-contact health monitoring systems to be precise 
and dependable, it is essential to accurately align radar 
and sensor signals [5, 6]. 

While prior research has shown that Frequency 
Modulated Continuous Wave (FMCW) radar can 
detect HR and RR, obstacles remain in achieving 
precise signal alignment. Although radar technology 
has progressed, there is insufficient comprehensive 
research examining how signal misalignment impacts 
measurement accuracy in physiological monitoring. 
This investigation seeks to address this knowledge gap 
by exploring the consequences of misalignment 
between radar and sensor data and investigating 
methods to achieve accurate synchronization. What 
impact does the misalignment of radar and sensor 
signals have on the precision of HR and RR 
measurements in non-contact monitoring systems? 
This study aims to assess the efficacy of  
cross-correlation techniques in synchronizing radar 
and sensor signals to reduce measurement errors. We 
theorize that utilizing cross-correlation techniques for 
signal alignment will substantially decrease errors and 
improve the accuracy of radar-based HR and RR 
monitoring. The evolution of healthcare technology 
has enabled the creation of innovative non-contact 
monitoring systems for physiological parameters such 
as heart rate (HR) and respiration rate (RR). 
Traditional methods, including electrocardiography 
(ECG) and pulse oximetry, require direct physical 

contact, which can be invasive, uncomfortable, and 
impractical in certain medical environments.  
Radar-based monitoring offers a promising alternative 
by allowing remote and continuous assessment of  
vital signs. 

 
 

2. Radar Technology in Healthcare 
 

Radar technology, traditionally used in military 
and defense applications for detecting aircraft and 
ships, has seen significant adaptation for biomedical 
uses over the past few decades. This shift includes the 
development of commercially available radar systems, 
such as Frequency Modulated Continuous Wave 
(FMCW) radar operating between 2.4 GHz and  
24 GHz, which can be employed for vital signs 
monitoring, including heart rate and respiration  
rate [1]. 

The fundamental mechanism of non-contact radar 
sensing involves emitting electromagnetic signals 
towards a subject. When these signals reflect off the 
body, the phase changes of the returned signal 
correlate directly with subtle movements, such as those 
caused by breathing and other cardiorespiratory 
activities [1]. 

This capability is enhanced by various signal 
processing techniques that extract vital signs from the 
reflected echoes, including breathing rate, heart rate, 
and tidal volume [1]. 

 
 

3. Cross-correlation Methodology 
 

Cross-correlation is a fundamental technique 
utilized to align radar and sensor signals by identifying 
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the relationships between two signals at various time 
lags. It quantifies the degree of similarity between 
these signals by shifting one relative to the other and 
analyzing their overlap. This process facilitates the 
identification of patterns and time delays, which are 
essential for achieving accurate signal alignment. 
Mathematically, cross-correlation is defined as a 
function that quantifies the similarity between two 
signals, x[n] and y[n], based on a time lag m. It is 
expressed as (1): 

 
 R_{xy}[m] = Σ x[n] · y*[n-m], (1) 

 
where y* represents the complex conjugate of y. 

This function effectively quantifies the degree of 
correspondence between the signal y and a  
time-shifted version of the signal x. By computing this 
similarity measure, cross-correlation facilitates the 
detection of time delays and precise signal alignment, 
rendering it an essential tool in radar, sensor 
applications, and various signal processing  
domains [2]. 

 
 

4. Radar System Specifications 
 

The radar system employed in this investigation 
operates with the following specifications, ensuring 
precise measurement and processing of physiological 
signals as presented in Table 1. 

 
 

Table 1. Radar Settings for Measurements. 
 

Parameter Value 
No. of Tx Channels 1 
No. of Rx Channels 2 
RF Centre Frequency 
[GHz] 

9.5 

Radar Mode FMCW 
Bandwidth [GHz] 1 
Chirp Duration [μs] 50 
No. of Samples per Chirp 512 
Doppler Processing FD:BPF+FFT,TD: EEMD 

Gold Standard 
ECG, Respiration Belt 

(RB) 
 
 
5. Methodology 
 

This study was part of a larger project investigating 
physiological monitoring using radar and sensor 
technologies. Supported by the Engineering and 
Physical Sciences Research Council (EPSRC) – 
Quantum Imaging for Monitoring of Wellbeing and 
Disease in Communities (QUEST, EP/T021020/1) and 
the Scientific and Steering Committees of the Women 
and Science Chair. Conducted in compliance with the 
ethical standards of the University of Glasgow, it 
received approval on May 21, 2024, under reference 
number 300230110.Data were collected in a controlled 
laboratory environment. Five healthy participants were 

recruited, each undergoing four repeated measurement 
sessions of one-minute duration. During each session, 
physiological signals were recorded using both radar 
and reference sensor devices. Participants were 
instructed to maintain a resting position under 
standardized conditions to minimize motion artifacts 
and external influences on the signals. 

In this study, multiple signal processing algorithms 
were employed to extract and refine heart rate (HR) 
and respiration rate (RR) from radar and sensor data. 
The key steps included preprocessing, filtering, 
estimation, error calculation, and alignment using 
cross-correlation techniques. The following section 
provides a detailed breakdown of the algorithms 
utilized in each stage of processing. 

 
 

5.1. Data Preprocessing 
 

Prior to the application of signal processing 
techniques, radar and sensor data were imported from 
CSV files and parsed into structured time-series data. 
The extracted components comprised: 

• Time (t): Represents the timestamp of each 
recorded sample; 

• Heart signal (HR_signal): The raw physiological 
signal corresponding to heart rate; 

• Respiration signal (RR_signal): The raw 
physiological signal corresponding to  
respiration rate. 

5.1.1. Import CSV files containing radar and sensor 
measurements. 

5.1.2. Extract time, HR, and RR components. 
5.1.3. Compute sample spacing (Δt) to determine 

signal resolution. 
5.1.4. Normalize signal amplitudes to maintain 

uniform scaling between radar and sensor signals. 
 
 

5.2. Signal Filtering 
 

To eliminate noise and unwanted frequency 
components, low-pass and bandpass filtering were 
applied separately for HR and RR signals. 

5.2.1. Respiration Rate (RR) Filtering – Low-Pass 
Butterworth Filter. 

• RR signals primarily reside within the 0.1–0.5 Hz 
frequency range; 

• A 4th-order Butterworth low-pass filter was 
implemented to attenuate high-frequency noise. 

5.2.1.1. Define cutoff frequency: 0.3 Hz. 
5.2.1.2. Design a low-pass Butterworth filter 

utilizing scipy.signal.butter. 
5.2.1.3. Apply the filter using scipy.signal.filtfilt 

for zero-phase distortion. 
5.2.1.4. Extract peaks and troughs from the 

smoothed RR signal. 
5.2.2. Heart Rate (HR) Filtering – FIR  

Bandpass Filter. 
• HR signals typically occupy the 0.8–3.0 Hz 

frequency range; 
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• A finite impulse response (FIR) bandpass filter 
was employed to remove low-frequency drift and 
high-frequency artifacts. 

5.2.2.1. Define passband frequencies: 0.8–3.0 Hz. 
5.2.2.2. Design an FIR filter utilizing 

scipy.signal.firwin. 
5.2.2.3. Apply filtering using scipy.signal.lfilter. 
 
 

5.3. Physiological Parameter Estimation 
 

5.3.1. Respiration Rate (RR) Estimation – Peak and 
Valley Detection. 

• Respiration rate was derived through the 
identification of peaks and valleys in the 
respiration signal; 

• The temporal difference between consecutive 
peaks was utilized to compute respiration rate. 

5.3.1.1. Detect local maxima and minima in the RR 
signal using scipy.signal.find_peaks. 

5.3.1.2. Compute the time difference (Δt) between 
successive peaks. 

5.3.1.3. Convert the difference into breaths per 
minute (BPM). 

5.3.2. Heart Rate (HR) Estimation – Time-Gated 
Peak Detection (TGPD) 

• The Time-Gated Peak Detection (TGPD) 
algorithm was implemented to refine heart rate 
estimation. 

5.3.2.1. Identify prominent peaks in the HR signal 
using scipy.signal.find_peaks. 

5.3.2.2. Apply a time-gating threshold to filter out 
erroneous peaks. 

5.3.2.3. Compute HR in beats per minute (BPM). 
 
 

5.4. Error Calculation – Pre-alignment 
 

Errors were computed to assess initial 
discrepancies prior to alignment. 

Error Metrics Utilized: 
• Mean Absolute Error (MAE); 
• Root Mean Square Error (RMSE). 
 
 

5.5. Signal Alignment – Cross-correlation 
 

To minimize discrepancies, a cross-correlation-
based alignment technique was implemented. 

5.5.1. Compute the cross-correlation between radar 
and sensor signals. 

5.5.2. Identify the lag k_max where correlation is 
maximized. 

5.5.3. Shift the radar signal by k_max samples to 
align with the sensor signal. 

5.5.4. Recalculate HR and RR post-alignment. 
 
 

6. Results 
 

Participants were recruited from a controlled 
laboratory setting. A total of five participants were 

enrolled, with six participants completing the study. 
Data collection was successfully completed for all 
subjects, and no participants were excluded due to data 
inconsistencies or missing information. The study 
sample included 3 males and 2 females with an average 
age of 18-60 years (95 % CI: A–B). All participants 
were in good health, and their baseline physiological 
parameters were within normal ranges. 

 
 

 
 

Fig. 1. Heart and Respiration Signal Extraction  
from Radar. 

 
 
For this sample, we observe a temporal shift of 

0.026 seconds (lag of 26 samples) in the cardiac signal, 
indicating a slight delay in its response. Conversely, 
the respiratory signal exhibits a temporal shift of  
-0.038 seconds (lag of -38 samples). Fig. 2 illustrates 
this relationship, demonstrating the shift differences 
between the two signals. 

Following the application of cross-correlation and 
subsequent signal alignment, we observe a Respiration 
Signal Time Shift of 0.0 seconds and a Heart Signal 
Time Shift of 0.0 seconds. This observation indicates 
that both signals are now in perfect synchronization. 
Fig. 3 illustrates this alignment, demonstrating that the 
signals maintain phase coherence over the time 
interval from 0 to 0.6 seconds. 

The accuracy of radar-derived HR, and RR 
measurements is assessed by comparing them to sensor 
data before alignment in Table 2. 

 
 

Table 2. Accuracy Assessment of Radar-Derived Heart 
Rate and Respiration Rate Measurements Before Alignment 

Compared to Sensor Data. 
 

Object HR (Radar)
RR 

(Radar)
HR 

(Sensor) 
RR 

(Sensor) 
Error 

(H)

1 70.18 18.32 86.32 16.69 18.697 

2 64.54 14.61 83.71 25.48 22.900 

3 63.79 19.51 72.59 23.26 12.122 

4 66.07 22.59 82.61 26.34 20.021 

5 68.17 15.87 88.60 16.28 23.058 
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After aligning the signals using cross-correlation, 
HR, and RR are recalculated to ensure an accurate 
comparison: 

 
 

7. Discussion 
 

This study demonstrates that implementing  
cross-correlation techniques for signal alignment 
significantly reduces errors in non-contact 
physiological monitoring using radar-based systems. 

Misalignment between radar and sensor signals can 
lead to inaccuracies in heart rate (HR) and 
respiration rate (RR) measurements. By applying 
cross-correlation-based alignment, the study achieved 
near-zero discrepancies, im- proving the reliability of 
radar-based monitoring. The study suggests that future 
research integrating AI-driven adaptive filtering could 
further enhance real-time synchronization, enabling 
widespread clinical adoption of radar-based 
monitoring in various healthcare applications. 

 
 

 
 

Fig. 2. Time Shift and Lag Analysis of Heart and Respiration Signals. 
 
 

 
 

Fig. 3. Aligned Heart and Respiration Signals After Cross-Correlation. 
 
 

Table 3. Accuracy Assessment of Radar-Derived Heart 
Rate and Respiration Rate Measurements After Alignment 

Compared to Sensor Data. 
 

Object 
HR 

(Radar) 
RR 

(Radar) 
HR 

(Sensor) 
RR 

(Sensor) 
Error 

(H) 

1 70.18 18.32 86.32 16.69 18.697 

2 64.54 14.61 83.71 25.48 22.900 

3 63.79 19.51 72.59 23.26 12.122 

4 66.07 22.59 82.61 26.34 20.021 

5 68.17 15.87 88.60 16.28 23.058 
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Summary: Operator networks are designed to approximate nonlinear operators, which map between infinite-dimensional 
spaces like function spaces. These networks are increasingly important in machine learning, particularly in scientific 
computing, due to their ability to handle data common in fields like climate modeling and fluid dynamics, where inputs are 
often discretized continuous fields (e.g., temperature or velocity distributions). We introduce the radial basis operator network 
(RBON), which represents a breakthrough as the first operator network capable of learning an operator in both the time and 
frequency domains when adjusted to accept complex-valued inputs. Despite the small, single hidden-layer structure, the RBON 
boasts small ܮଶ relative test error for both in- and out-of-distribution data (OOD) of less than 1 × 10ି in some benchmark 
cases. Furthermore, it maintains small errors on OOD data from entirely different function classes than those used during 
training, showcasing its robustness and adaptability for advanced scientific applications. 
 
Keywords: Operator networks, Neural operators, Radial basis functions, Machine learning, Scientific computing, Partial 
differential equations 
 

 
1. Introduction 
 
1.1. Background 
 

Traditional feedforward neural networks (FNNs) 
and radial basis function (RBF) networks have been 
shown to be universal approximators of functions  
[1, 2], meaning they are capable of representing the 
mapping between finite dimensional spaces. Thus, 
these networks are limited in their design to predicting 
a measurement acting on a subspace of ܴௗ for some  ݀ ∈ Z+. Operator networks, however, are designed to 
learn the mapping between infinite dimensional 
spaces; they receive functions as input and produce the 
corresponding output function. Scientific computing 
has benefited from using operator networks to enhance 
or replace numerical computation for the purpose of 
simulation and forecasting on a wide array of 
applications to include computational fluid dynamics 
and weather forecasting [3]. 

The two primary neural operators that 
demonstrated immediate success are the deep operator 
network (DeepONet) [4] based on the universal 
approximation theorem in [5], and the Fourier neural 
operator (FNO) [6]. The basic DeepONet 
approximates the operator by applying a weighted sum 
to the product of each of the transformed outputs from 
two FNN sub-networks. The upper sub-network, or 
branch net, is applied to the input functions while the 
lower trunk net is applied to the querying locations of 
the output function. 

In contrast, the FNO is a particular type of Neural 
Operator network [7], which accepts only input 
functions (not querying locations for the output) and 
applies a global transformation on the function input 
via a more intricate architecture. Motivated by 
fundamental solutions to partial differential equations 
(PDEs), the FNO network sums the output of an 

integral kernel transformation to the input function 
with the output of a linear transformation. The sum is 
then passed through a non-linear activation function. 
To accelerate the integral kernel transformation, the 
FNO applies a Fourier transform (FT) to the input data, 
with the FT of the integral kernel assumed as trainable 
parameters. 

Following their initial introduction, several 
extensions and modifications to FNO and DeepONet 
were introduced to improve performance in specific 
contexts. Examples include the Fourier-enhanced 
DeepONet [8] to improve DeepONet’s robustness 
against Gaussian noise, U-FNO [9] and MIONet [10] 
introduce U-Net paths into the Fourier layer of the 
FNO architecture to improve accuracy for multi-phase 
flow applications, and model-parallel FNOs [11] 
parallelise the structure of FNO to reduce computation 
load for high-dimensional data. However, many of 
these situational improvements did not result in clear 
error reductions across a variety of contexts, at least 
not enough to justify the additional complexity in 
architecture contained in some of the proposed 
methods. This has changed with the recent 
introduction of a new neural operator. 

The Laplace Neural Operator (LNO) [12] has 
recently become a benchmark standard for operator 
networks due to its improved handling of transient 
responses and non-periodic signals, limitations 
inherent in the Fourier Neural Operator (FNO). LNO 
achieves this by leveraging the pole-residue method to 
represent both transient and steady-state responses in 
the Laplace domain, leading to better test performance 
on out-of-distribution (OOD) data in most contexts. 
Additionally, LNO boasts a reduced training cost and 
a simpler network architecture. For these reasons, we 
have selected LNO as the primary comparison for our 
new operator network, alongside FNO and DeepONet. 
To thoroughly evaluate performance, we include a 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

190 

problem scenario from [12] that highlights LNO’s 
small OOD error in predictions. 
 
 
1.2. Our Contributions 
 

We propose the radial basis operator network 
(RBON) based on the universal approximation 
theorem in [13]; a novel operator network that is, to the 
best of our knowledge, the first to be entirely 
represented with radial basis functions: 

• The universal approximation result in [13] is 
extended to normalised RBONSs (NRBONs); 

• The RBON is the first network to successfully 
learn an operator entirely in both the time domain 
and frequency domain, by altering the algorithm 
to accept complex data types; 

• Despite the simple single-hidden-layer structure, 
the particular implementation of the RBON 
within demonstrates impressively small error on 
both in-distribution (ID) and OOD data, 
outperforming LNO by several orders of 
magnitude; 

• The RBON demonstrates successful results on 
the first OOD example where the OOD input is 
an entirely different base function. Typically, 
OOD input functions for introducing new 
operator networks are a scaling, shifting, or 
simple transformation of the input functions used 
in training. 

While operator networks are usually tested only 
using data generated from known systems, such as in 
systems of partial differential equations (PDEs), we 
include a scientific application where the data is real 
physical measurements and the underlying operator is 
unknown. This demonstrates the ability of RBON to 
make accurate forecasts for time-dependent systems, 
for the purposes of scientific experimentation. The rest 
of the paper is organised as follows, the theoretical 
foundation and details regarding the particular 
implementation are presented in Section 2, which 
precedes the results of the numerical experimentation 
first on generated data followed by the observed data 
in 3, with the discussion and conclusion at the end. 
 
 
2. Methodology 
 

The RBON is a numerical representation, ܩற, for 
an operator, ܩ:࣯ → ࣰ, where ࣯ and ࣰ are infinite 
dimensional spaces, using radial basis functions. 
Following the work as shown in [13], we present, 
without proof, the universal approximation theorem 
for such a representation as well as extending the 
theorem to include NRBONs. The subsequent section 
details the precise implementation used for the 
experimental results. 
 
2.1. Theoretical Foundation 
 

In distribution theory the Schwartz space, ࣭ (ܴௗ), is 
the space of rapidly decaying functions that are 

infinitely differentiable and whose derivatives decay 
faster than a polynomial. Essentially, these are smooth 
functions that vanish quickly away from their center. 
The space containing all linear functionals that act on 
the Schwartz space is referred to as the space of 
tempered distributions and is represented symbolically 
as ࣭ᇱ(ܴௗ); the prime notation connotes the duality 
relationship between the spaces. These spaces are for 
defining the necessary regularity for the radial basis 
functions used in the approximation. 

Noting that (ܣ)ܥ represents all continuous 
functions defined on ܣ, consider the functions ݃  
such that  

 
 ݃ ∈ (ܴ)ܥ ∩ ܵᇱ(ܴ), (1) 

 
meaning ݃  is in the space of tempered distributions and 
is continuous on ܴ. Choosing ‖ݔ‖ோ	to represent the 
Euclidean norm for ݔ ∈ ܴௗ, we can represent a radial 
basis function acting on ݔ as 
 

 ݃൫λ‖ݔ − μ‖ோ൯,  
 
for constants λ ∈ ܴ, μ ∈ ܴௗ. Then we have the 
following (see [13] for the proof with details). 

Theorem 2.1. Suppose ݃  is not an even polynomial 
and satisfies (1), ܺ is a Banach space where  ܭଵ ⊆ ଶܭ,ܺ ⊆ ܴௗ are two compact sets in ܺ and ܴௗ 
respectively. Suppose also that ࣯ is a compact set in ܥ(ܭଵ), ܩ is a nonlinear continuous operator, mapping ࣯ into ܥ(ܭଶ), then for any small positive ߳, there are 
positive integers ܯ,ܰ,݉, constants ߦ, ߱, ߣ ∈ ܴ, ݇	 ∈ {1, … ,ܰ}, ݅	 ∈ {1,… …,ଵݔ points ݉ ,{ܯ, , ݔ ,ଵ, ܿଵܭ∋ … , ܿே ∈ ܴௗ, such that 
 

 ห(ݕ)(ݑ)ܩ − ห(ݕ)(ݑ)றܩ < ϵ,  
 
for every ݑ ∈ ࣯ and ݕ ∈ ݑ  ଶ, whereܭ = ൫ݑ(ݔଵ), … ,  ൯, and(ݔ)ݑ
 

 
∑=(࢟)(ݑ)றܩ ∑ ேୀଵெୀଵߦ ݑ‖ߣ)݃ ࢟‖‖ோ)݃൫߱ߤ−− −  ோ൯, (2)‖ࢉ−

 
for μ = (μଵ ,… , μ ), ݇ = 1,… ,ܰ. 

For ϵ and ξ given as in Theorem 2.1 set 
ప෪ߦ  = ߦ ∑ ݑ‖ߣ)݃ − ࢟‖‖ோ)݃൫߱ߤ −ெୀଵ  ோ൯, (3)‖ࢉ−

 
and the corollary extending the theorem for the 
normalised representation follows immediately. 

Corollary 2.1.1. Under the same assumptions in 
Theorem 2.1 and with ߦ as defined in (3), we have 
 

 ห(ݕ)(ݑ)ܩ − ห(ݕ)(ݑ)ற෪ܩ < 	ϵ,  
 
where 
(ݕ)(ݑ)ற෪ܩ  =	= ∑ ∑ ξప෩ ቀฮ௨ିஜೖฮೃቁቀனೖ‖௬ିೖ‖ೃቁ∑ ∑ ቀฮ௨ିஜೖฮೃቁ൫னೖ‖௬ିೖ‖ೃ൯ೖಿసభಾసభேୀଵெୀଵ   
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The RBON, as represented in (2), comprises two 
single-layer sub-networks of radial basis functions. 
This architecture extends the concept of RBF networks 
to operators, analogous to how DeepONet extended 
FNNs. The sub-network that processes the function 
input ݑ is called the branch net. Here, ݑ represents 
the input function ݑ sampled at ݉ point locations, as 
defined in the theorem. The trunk net, on the other 
hand, receives inputs corresponding to the domain 
locations where the network will produce output 
function values. 
 
 
2.2. Practical Implementations 
 

Having established the theoretical foundation, we 
now turn to the practical implementation of our 
approach. This section outlines the step-by-step 
process for the realised implementation of both RBON 
and NRBON. The implementation consists of several 
key steps that translate our theoretical model into a 
functional algorithm. 

From Theorem 2.1, recall ݑ ∈ ܴ represents the 
numerical approximation of the function ݑ sampled at ݉ locations, ܩற is the network approximation of the 
operator, ܩ, mapping ݑ to the function ݒ at the query 
location ݕ ∈ ܴௗ. Then, given input functions ݑ for ݆	 ∈ {1, … , ୪ for lݕ and query locations ,{ܬ ∈ {1, … ,  {ܮ
where ܬ and ܮ denote the number of training input 
functions and query points, respectively, we outline the 
process for finding the network parameters. 

RBF transformations. In both the trunk and 
branch networks we employ Gaussian functions for the 
RBF transformations, defined as 

 

 ϕ(ݔ, ܿ, σ) = exp ቀ− మଶమ‖ࢉି࢞‖ ቁ,	  

 
where ܿ and σ	are the RBF centers and spreads. The 
RBF centers are determined using K-means clustering 
[14, 15] on the input data for each sub-network, with 
the spreads calculated based on inter-cluster distances. 
The branch and trunk network transformations on an 
input pair {ݑ,  and ܰ RBFs, are ܯ ୪}, withݕ
represented by the vectors 
 ܾ൫ݑ൯ = ൣϕ൫ݑ, ܿଵ, σଵ൯, … , ϕ൫ݑ, ܿெ , σெ ൯൧், ݐ(ݕ୪) = [ϕ(ܔ࢟, ܿଵ௧, σଵ௧ ), … , ϕ(ܔ࢟, ܿே௧ , σே௧ )]், 

 

 
where ܿ , ܿ௧  are the RBF centers and σ, σ௧  are spreads 
for the associated branch and trunk networks. 

Weight parameter calculation. For each query 
location ݕ୪, we first compute 

 
 Φ୪ = ⊗(ଵݑ)ܾൣ ,(୪ݕ)ݐ … , ܾ൫ݑ൯⊗   ,൧(୪ݕ)ݐ

 
where ⊗ denotes the Kronecker product, making Φ୪ of 
dimension ܰܯ ×  The weights ξ୪ of .ܬ
dimension	ܰܯ × 1, are then determined by solving 
 

 ξ୪் Φ୪ = ⋯,(୪ݕ)ଵݒൣ ,   ,൧(୪ݕ)ݒ
 
using the Moore-Penrose inverse [16-17]. This process 
yields ܮ weight vectors ξ୪, for each query point. The 
final weight vector ξ is obtained by element-wise 
averaging across the ܮ vectors ξ୪. Given the input ݑ, 
the network approximation for the associated output 
function ݒ at query point ݕ is then 
 

(ݕ)(ݑ)றܩ  = ℒ(ξ்[ܾ(ݑ)⊗   ,([(୪ݕ)ݐ
 
where ℒ denotes a linear transformation applied to the 
final output whose parameters are solved for directly 
using the training data. 

NRBON modification. The NRBON differs from 
RBON in normalizing the products of the branch and 
trunk outputs by dividing each element of the vector [ܾ(ݑ)⊗  by the vector's sum. This [(୪ݕ)ݐ
normalization adjusts the computation of Φ୪ by its 
column totals. 

Using K-means to determine the parameter 
locations for the RBFs limits the number of RBFs in 
the representation by the size of the training data set. It 
is worth noting that manually assigning the centers for 
the RBFs produces satisfactory results, but tends to 
result in larger error than using K-means. Hence 
manually assigning centers is only advisable when 
working with small training sets. Moreover, the 
majority of the variation in train/test error is mostly 
due to the varying results from the location parameters 
determined by the K-means clustering. 

Concluding the description of the practical 
implementation, we note that the network weights can 
be solved for using an iterative approach such as  
least-mean-squares, but results in weights that on 
average produce larger error in their predictions. 
 
 
2.3. Learning in the Frequency Domain 
 

The RBON is designed to learn the operator in the 
frequency domain as well as in the time domain. The 
frequency domain is a representation of signals or 
functions in terms of their frequency components, 
rather than time. It allows analysis of how signals vary 
with frequency, providing insight into characteristics 
like energy, power, and periodicity. The frequency 
domain is often used to examine cyclic behavior, 
separate overlapping signals, and simplify certain 
mathematical operations on signals. Considering that 
functions have a global representation in the frequency 
domain, this can have benefits in reducing the 
variability on the RBONs predictions for OOD data. 

Thus, the RBON can be trained on functions in the 
time domain to approximate the operator ܩ, or the 
Fourier transform, ℱ, can be used to convert functions 
to the frequency domain, in which case the RBON is 
learning the approximation in the frequency domain. 
This is especially beneficial for applications where the 
data is stored in the frequency domain representation. 
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3. Numerical Experiments and Results 
 

This section is partitioned into numerical 
computing experiments and a scientific application 
based solely on data collected from observed 
measurements. This demonstrates the ability for the 
RBON to learn the mapping in a variety of contexts 
including when the mathematical representation for the 
operator is unknown. We define the numerical 
computing setting here as scenarios where the data is 
completely generated from numerical approximations 
of solutions to mathematical equations. Thus, the 
operator is known precisely and the results of the 
RBON can be compared to the numerical 
approximation of the operator output. 

Alternatively, the governing equations for 
scientific applications are not always known and data 
is often aggregated from physical measurements. 
Distinguishing between settings using generated data 
as opposed to observed data shows the flexibility of the 
RBON and its ability to support scientific 
experimentation and forecasting. 

For all the numerical computing experiments, we 
limited the size of the trunk and branch networks to be 
no larger than 15 nodes each, capping the number of 
multiplier parameters in the hidden layer at 225. These 
restrictions demonstrate the network's ability to 
maintain small errors even under incredibly strict size 
constraints. All code for the RBON learning 
representation was implemented using the Julia 
programming language [18], chosen for its  
high-performance numerical computing capabilities, 
and has been made available at 
https://github.com/jkurz119/RBON. 
 
 
3.1. Numerical Computing 
 

In each of the following settings, there is a 
governing system of PDEs defined on a  
spatio-temporal domain, Ω ≡ (0, ܶ) × (0,  for some (ܮ
final time ܶ > 0 and length ܮ > 0. The operator 
network, ܩற, was trained to learn an operator ܩ within 
the PDE framework that maps functions representing 
the initial state or forcing term to the solution over the  
entire domain. 

The input functions for the network for the in 
distribution data will thus be a family of functions 
representing an initial state (or forcing term) and 
parameterized across a specified range of values. ID 
data was segmented to produce a validation and test 
set. The validation set was used to optimized the size 
of the network over a few selected options. The test set 
provides the in-distribution test error with the out-of-
distribution errors based on a set of input functions that 
have been more significantly altered from the in 
distribution data. 

Wave Equation. Consider the wave equation of 
the form 

 

 பమ௨డ௧మ = ܿଶ డమ௨ப௫మ for	(ݐ, (ݔ ∈ Ω,  

where ܿ is the speed of propagation of the wave and ݐ)ݑ,  models the displacement of a string with (ݔ
Dirichlet boundary conditions. The operator network, ܩற, was trained to learn the mapping, ܩ, from the 
initial state to the solution, ܩ: (ݔ)ݑ → ,ݔ)ݑ  For the .(ݐ
ID data, we particularize the initial condition as 
 

(ݔ)ݑ  = 2݁ିቀ௫ିಽమቁమ + ௫ ,  

 
where ܽ is parameterized across the range [1,4] with 
step size 0.001. The OOD test set uses the same base 
function for ݑ(ݔ), but for values of ܽ in the range [5,5.5]. 

Burgers Equation. Consider the well-known 
Burgers' equation 

 

 ப௨డ௧ + ݑ ப௨ப௫ = ν డమ௨ப௫మ ,  for	(ݐ, (ݔ ∈ Ω,  

 
subject to homogeneous Dirichlet boundary 

conditions and under the following initial conditions ݑ(ݔ) = ܽ sin π :ܩ where ܽ ranges across the interval [0.1,5]. The operator learned is thus ݔ (ݔ)ݑ ,ݔ)ݑ→  and the RBON is tested on the set of (ݐ
polynomial functions ݑ(ݔ) = ݔ)ݔܾ − 1) where ܾ is 
in the range [3.5,4.5] for the OOD data. Successful 
testing on the polynomial input after only being trained 
on the sine function is quite remarkable. The numerical 
data was generated using the exact solutions as  
derived in [19]. 

Euler-Bernoulli Beam Equation. The Euler-
Lagrange equation for a dynamic Euler-Bernoulli 
homogeneous beam is 

 

ܫܧ  பర௨ப௫ర + ρܣ பమ௨ப௧మ = ,ݐ)݂ ,ݐ)	for	(ݔ (ݔ ∈ Ω,  

 
where ܧ is Young's modulus, ܫ is the second moment 
of the area of the beam's cross section. The beam's 
density is denoted by ρ and the cross-sectional area as ܣ. The operator network learns the mapping from the 
source term to the solution: ܩ: ,ݐ)݂ (ݔ → ,ݐ)ݑ  For .(ݔ
the ID data we particularize the source term as ݂(ݐ, (ݔ = ܽ݁ି.ହ௫(1 − 10ଶ) sin(10ݐ) for ܽ in [0.05,10]. The source term for the out of distribution 
data is ݂(ݐ, (ݔ = ܽ݁ି௫(1 − 10ଶ) sin(10ݐ) for ܽ in [1.24,10.19]. This scenario was used for testing in 
[12]. We include it here for benchmarking purposes, 
but note we decrease the size of the training set to 
include in-distribution test error. 

Results. The results from these experiments can be 
seen in Table 1, which displays the average ܮଶ error for 
each function in the ID and OOD test sets. The ܮଶ 
relative error is computed as follows 

 

ଶܮ  .݈݁ݎ ݎݎݎ݁ = ቚห௩ೝೠି௩ೝหቚమቚห௩ೝೠหቚమ ,  

 
where ݒtrue represents the ground truth values at all 
query points in the space-time domain, and ݒpred 
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represents the network's predictions at the  
same locations. 

The margin of error (MOE), shown in parentheses, 
was computed by multiplying the standard error of the 
point estimate by the critical value for a 95 % 
confidence level. While the strict interpretation of the 
confidence interval is limited due to the  
non-independence of observations, the MOE still 
provides an indication of variability in the  
average error. 

Across the majority of problems, the RBON 
variants outperform the LNO, with the NRBON 
achieving consistently superior performance on both 
ID and OOD data. Overall, RBON variants 
collectively tend to outperform other operator 
networks, with one exception. Notably, operator 
networks generally exhibit smaller errors for the Beam 
equation due to their ability to accurately represent 

linear operators. Networks that leverage global 
representations – such as FNO, LNO, and F-RBON 
(which trains on data with global representations) –
tend to generalize better, while other networks overfit 
ID data and have significantly worse performance on 
OOD data. This difference is especially noticeable 
with the OOD input data for the Wave problem due to 
its highly oscillatory behavior. 

DeepONet initially suffered from overfitting, 
resulting in poor OOD performance, but early stopping 
significantly improved its OOD errors, albeit at the 
cost of slightly worse ID errors. However, this 
improvement came at the expense of efficiency: 
DeepONet required significantly larger sub-networks, 
with over 10,000 products between trunk and branch 
outputs, compared to fewer than 200 products in  
the RBONs. 

 
 

Table 1. Average relative L^2 error on ID/OOD test data reported with margin of error in parentheses. 
 

Network In/Out Wave Burgers Beam 

RBON 
In 

Out 
9.4E−4(4.9E−5) 
1.0E−1(2.0E−3) 

3.6E−3(6.0E−4) 
2.6E−1(1.3E−2) 

4.1E−8(3.3E−6) 
1.5E−1(2.5E−7) 

NRBON 
In 

Out 
1.2E−5(9.4E−7) 
3.2E−1(1.1E−2) 

3.3E−3(9.0E−4) 
1.0E−1(5.7E−3) 

1.6E−7(2.4E−7) 
2.0E−8(4.9E−9) 

F-RBON 
In 

Out 
3.0E−6(2.2E−7) 
8.6E−3(1.7E−4) 

5.9E−3(1.1E−3) 
2.3E−2(5.5E−3) 

1.1E−1(1.3E−1) 
6.6E−2(7.0E−3) 

LNO 
In 

Out 
5.6E−1(1.1E−3) 
5.9E−1(9.2E−4) 

1.7E−1(4.3E−4) 
2.0E−1(8.0E−6) 

1.0E−2(3.9E−3) 
6.8E−3(1.5E−3) 

FNO 
In 

Out 
9.9E−4(2.3E−5) 
1.1E−1(1.4E−3) 

9.3E−3(1.2E−3) 
1.7E−2(7.0E−6) 

4.0E−3(6.1E−3) 
1.5E−3(2.2E−4) 

DON 
In 

Out 
5.3E−2(2.5E−4) 
4.9E−2(3.4E−5) 

9.9E−1(4.0E−5) 
9.9E−1(2.0E−6) 

2.9E−1(2.9E−1) 
2.5E−1(1.4E−2) 

 
 
3.2. Scientific Application 
 

Modeling the relationship between atmospheric COଶ and global temperature is a complex process 
involving a large number of variables with many of 
them potentially unknown [20]. Focusing specifically 
on an operator that does not have a well-defined 
mathematical representation, we demonstrate the 
capacity of the RBON to learn the mapping between 
monthly atmospheric COଶ measurements and both 
local and average global monthly temperatures. This 
provides a template for prediction and forecasting with 
the RBON based on collected data. 
For this section, the RBON is used to learn the 
operators 
 

 
:௩ܩ (ݐ)ݑ → ܶ௩(ݐ),	ܩ: (ݐ)ݑ → ܶ(ݐ),  

 
where ݑ represents the atmospheric COଶ defined for ݐ 
in a given time interval, and	ܶ௩ represents the 
average global temperature as published in [21]. The 
function ܶ is local temperature readings at the same 
site location where the COଶ data was collected. 
Specifically, atmospheric COଶ concentrations (ppm) 

derived from in situ air measurements at the well 
known Mauna Loa, Observatory, Hawaii [22]. The 
local temperature readings are much more variable 
than the global average and hence less easily predicted. 

The nature of the operators ܩ௩ and ܩ is 
expected to evolve in time due to fluctuations in other 
contributing factors, however, when continuously 
updating the RBON with new data, the predictions 
become quite accurate. While, it is possible to feed the COଶ readings into the network as one function, the 
centers for the RBFs must be set manually as the  
K-means algorithm requires at least two function 
inputs. Instead, it is preferable to parameterize the 
functions across the years such that ݐ	 ∈ {1,2, … ,12} 
with each number corresponding to the month of the 
year the measurement was taken. Then operators are 
thus more accurately represented as 

 

 
:௩ܩ (ݐ)ݑ → ܶ௩(ݐ), ܩ: (ݐ)ݑ → ܶ(ݐ),  

 
where ݊  corresponds to a specific year. Training on the 
historical data, omitting years with incomplete data, 
yields remarkable accuracy in the RBON predictions 
as shown in Table 2. 



7th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria 

194 

Results. The results in Table 2 highlight the 
effectiveness of RBON in accurately predicting both 
local monthly average temperatures and global average 
temperatures. To evaluate the forecasting accuracy, we 
trained RBON and NRBON networks on historical 
temperature data, withholding the most recent two or 
five years from the training set for testing. In addition 
to these models, we compared their performance 
against LNO, DeepONet, FNO, and LSTM. This 
comprehensive evaluation demonstrates the robustness 
of RBON across diverse benchmarks, including 
traditional time-series approaches such as LSTM [23] 
and as well as other operator networks. 

Based solely on monthly COଶ measurements and 
the month encoding for querying the output 
temperature, the RBON maintains an ܮଶ relative error 
of less than 10	%, with NRBON performing similarly. 

Fig. 1 displays a comparison between the trained 
RBON networks' global temperature predictions and 
actual global temperature readings. The left graph 
shows the results when holding out the most recent two 
years, while the right graph illustrates the outcome 
when holding out the most recent five years of data. 
Interestingly, several networks – including RBON,  
F-RBON, DeepONet and LSTM – performed similarly 
on the smoother global temperature data. However, 
performance on the more variable local temperatures 
at the observatory publishing the atmospheric COଶ 
measurements [22] provided a clearer distinction as 
RBON outperformed other networks, which struggled 
to capture the finer-scale variations in the data. Fig. 2 
provides the visual comparison for local temperatures 
versus the predictions from the RBON variants. Note 
that temperature data for the local set was only 
available through 2018. 

 
 

Table 2. Average rel. ܮଶ test error on local temp. Data. 
 

Global temp:  
2 yr 0.02 0.14 0.02 0.96 0.02 0.31 0.01 
5 yr 0.02 0.15 0.01 0.97 0.02 0.44 0.01 

Local temp:  
2 yr 0.07 0.13 0.04 0.94 0.35 0.18 0.15 
5 yr 0.07 0.13 0.13 0.95 0.51 0.22 0.14 

 
 

  
 

Fig. 1. Two (left) and five (right) year global temperature predictions based on ܱܥଶ input. Forecast values in shaded region. 
 
 

 
 

Fig. 2. Two (left) and five (right) year local temperature predictions based on CO� input. Forecast values in shaded region. 
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The significance of this result implies a robust 
model capable of providing reliable future temperature 
projections based on various atmospheric COଶ 
scenarios under different climate responses. This 
robustness stems from the model's ability to isolate the 
impact of COଶ on temperature, as the effects of other 
contributing elements are learned in the operator 
approximation. While predicting solely based on COଶ 
measurements provides a simple example, there is an 
opportunity to include other contributing factors in the 
operator input to understand how co-variation among 
several input variables may affect the output. 

Testing revealed that increasing the width of the 
branch and trunk networks enhances the model's 
flexibility to match highly variable and erratic 
behavior. However, given highly oscillatory data, the 
plain RBON can occasionally produce peaks and 
valleys that deviate too far from the data range when 
increasing model width. In contrast, the NRBON can 
increase its network size without generating extreme 
peaks. Consequently, the smaller RBONs used yield a 
more stable regression appearance, while the larger 
NRBON networks produce outputs that attempt to 
capture more of the random extreme values. This 
results in a slightly higher error (≤ 0.17) for the 
NRBON, but a shape that more closely resembles the 
true graph. 

For completeness, we include all results pertaining 
to learning the operator in the frequency domain, 
namely the F-RBON. These results are presented in 
Table 2. It's worth noting that this dataset does not 
naturally lend itself to a Fourier transform, and the 
additional computational work is unnecessary since the 
representation in the time domain is sufficient. 
 
 
4. Discussion and Conclusion 
 

The RBON and its variants offer a simple yet 
powerful network architecture with prediction 
capabilities that yield errors smaller than the current 
leading operator network. The network's compact size 
provides opportunities for enhanced interpretability 
and reduced computational load, allowing for exact 
solutions of network parameters. Most variation across 
training cycles arises from the location and scale 
parameters of the RBFs, largely due to K-means' 
tendency to converge on local extrema. This variability 
can lead to errors differing by several orders of 
magnitude between runs of the K-means algorithm. A 
practical solution is to run K-means multiple times and 
select the configuration that minimizes the overall 
within-cluster distances. Furthermore, the RBON 
serves as an excellent tool for scientific computing, 
where recent advancements have only begun to 
explore the potential of operator networks in various 
fields. Finally, the RBON's ability to train on both real 
and complex-valued inputs, combined with its other 
strengths, makes it a promising candidate for 
applications in signal processing and computer vision 
tasks. The results in Table 2 demonstrate that RBON 
achieves superior accuracy across all PDE 

benchmarks, maintaining robustness even for OOD 
test cases. 
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Summary: Pilots face unique psychological challenges and possess distinctive psychological traits. Research in aviation 
psychology has shown that pilots exhibit increased levels of assertiveness, activity, and a propensity for excitement-seeking. 
Initially, reactions were analyzed manually using the Facial Action Coding System (FACS), which includes 46 action units 
(AUs). Today, automated systems based on artificial intelligence, like FaceReader (by Noldus), have been developed. Other 
physiological parameters, such as blood pressure, heart rate, heart rate variability (HRV), and skin conductance, provide 
additional methods for recognizing emotions. The electroencephalogram (EEG) allows for a deeper understanding of emotions 
by examining bioelectrical responses and cognitive appraisal processes. This paper presents a protocol for the integration of 
automated and dynamic facial expression emotion recognition with EEG for the analysis of emotional traits in pilot candidates. 
The system is tested at the Poznan University of Technology Aviation Training Center. Additionally, the collected data will 
be used to build an AI model, which is intended to be used to support personalized neurorehabilitations. 
 
Keywords: Emotion recognition, EEG analysis, Neurological evaluation. 
 

 
1. Introduction 
 

Pilots face unique psychological challenges and 
possess distinctive psychological traits. Research in 
aviation psychology has shown that pilots exhibit 
increased levels of assertiveness, activity, and a 
propensity for excitement-seeking [1]. Additionally, 
they demonstrate a more effective capacity to manage 
fear, anxiety, and stress compared to the general 
population [2, 3]. Studies using questionnaires [4] have 
established a positive correlation between global 
emotional intelligence (EI) scores and safety 
citizenship (SC), suggesting that EI can be a predictor 
of SC. Furthermore, EI is positively associated with 
safety behaviors, leading to enhanced safety standards. 
Emotional intelligence encompasses the ability to 
recognize, understand, and manage one's own 
emotions, as well as those of others. Facial expression 
analysis offers a way to monitor emotional states and 
reactions through the examination of facial muscle 
activity. Initially, reactions were analyzed manually 
using the Facial Action Coding System (FACS), which 
includes 46 action units (AUs). Today, automated 
systems based on artificial intelligence, like 
FaceReader (by Noldus), have been developed. Other 
physiological parameters, such as blood pressure, heart 
rate, heart rate variability (HRV), and skin 
conductance, provide additional methods for 
recognizing emotions. The electroencephalogram 
(EEG) allows for a deeper understanding of emotions 
by examining bioelectrical responses and cognitive 
appraisal processes. 

 

1.1. EEG in Pilots Testing 
 

The main interest of researchers in the assessment 
of the psychophysical state of pilots is the 
measurement of task load. This measurement aims not 
only to determine the current level of fatigue and 
stress, but also to predict their impact on the pilot's 
performance during long-term flight operations. In this 
complex system of interdependencies, the key role is 
played by the human ability to adapt to dynamically 
changing conditions. Task load directly affects the 
efficiency and correctness of the pilot's work [5]. EEG 
allows to determine the mental state of the person 
being examined. The results are most reliable and can 
provide correct information if the test is conducted in 
laboratory conditions. In the real working environment 
of a pilot (cockpit), there are too many external factors 
such as machine and instrument movements, current 
intensity, which can disturb the signal measured by the 
electrodes [6]. Monitoring the psychophysical 
condition of drivers can contribute to increased road 
safety. Regular use of such methods in transport 
practice allows for early detection of fatigue and 
implementation of preventive measures. Many 
specialists have attempted to link the results of 
electroencephalography tests with the level of task 
load imposed on the subjects. Signals measured by 
EEG strongly correlate with task load states, which has 
been confirmed many times by analyzing EEG 
measured while the subjects were performing 
demanding tasks [7, 8]. In February 2022, scientists 
from France conducted research that showed that the 
most sensitive to increased task load is the theta wave 
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band, the readings of which decreased with this 
increase. This was particularly visible in the frontal 
lobe area. On the other hand, alpha wave activity 
decreased. In the beta wave band, activity increased, 
but this was a moderate trend [9]. Other studies were 
conducted in Canada in 2023. They showed that beta 
and theta wave activity took on different trends 
depending on the physical load given to the subject – 
with medium physical load, activity in their bands 
increased slightly, while with high physical load it 
decreased. Delta waves, on the other hand, increased 
in each case if they were accompanied by an increase 
in task load [6]. Many other studies show that as the 
difficulty of a task increases, activity in the frontal lobe 
of the brain decreases, while theta activity increases 
[10]. A study conducted in China in 2024 focused on 
measuring brain waves during a turning maneuver, 
which involves a greater workload for the pilot. It was 
concluded that during the turning phase, there is a 
significant increase in the amplitudes of beta waves, 
and a decrease in delta, theta and alpha waves [11]. 
Similar conclusions were drawn from studies in 
Chengdu, China, which showed that a decrease in 
alpha frequency band power in the temporal lobe 
corresponds to high awareness and deep thinking [12]. 
Scientists W. Lang and A. Mecklinger also showed 
that alpha waves decrease the more complex the task 
the subject has to perform [13]. In most studies, it is 
indicated that the increase in task load is accompanied 
by: a decrease in alpha waves, an increase in beta 
waves, an increase in theta waves. Gamma waves are 
very rarely discussed, and the relationships of delta 
waves are ambiguous and differ for different studies. 

 
 

2. Proposed Protocol 
 
We propose a protocol, presented in Fig. 1, for 

integrating automated and dynamic facial expression 
emotion recognition with EEG to analyze emotional 
traits in pilot candidates. The protocol involves three 
parts: text exposure, aviation simulator training, and a 
questionnaire. Candidates will be exposed to various 
texts: glossolalic recitations, metaphoric texts, 
children's poem, and plain texts—separated by  
1-minute intervals of white noise (50 Hz) to establish 
baseline reactions as presented in Fig. 2. The 
FaceReader software will analyze video recordings 
(Noldus, Netherlands) to detect emotions like 
happiness, sadness, surprise, anxiety, anger, and 
disgust based on facial AUs. The glossolalic text 
consists of speech-like sounds that lack meaning, while 
a metaphor uses one word or phrase in place of another 
to suggest a likeness or analogy, activating the right 
insula, left temporal pole, and right inferior frontal 
gyrus (Schmidt, 2009). Simultaneously, EEG traces 
will be recorded using the Unicorn System (g.tec), 
along with physiological parameters including ECG, 
heart rate, and galvanometric skin conductance 
measurements. Next, the same data – comprising facial 
expressions, EEG traces, and physiological parameters 
– will be collected during the aviation simulation 

training. Finally, candidates will complete the Trait 
Emotional Intelligence Questionnaire-Short Form, 
which consists of 30 items designed to measure overall 
trait emotional intelligence. Moreover, Hamilton 
Anxiety Rating Scale (HAM-A) will be applied as a 
measure of psychic anxiety (mental agitation and 
psychological distress) and somatic anxiety (physical 
complaints related to anxiety) [14]. Afterward, the 
collected data will be integrated and analyzed using 
taxonomy statistical methods and machine learning to 
create an emotional profile of the pilot candidates. 

 
 

2.1. Data Analysis Procedures 
 
Analysis of electroencephalogram (EEG) signals 

using computer algorithms is a field that has been of 
interest to scientists for a long time. Among the 
research areas discussed in the literature classification 
of disease conditions and emotions recognition may be 
distinguished. In particular, in terms of the 
classification of disease conditions, the following may 
be indicated: 

• depression recognition [15, 16]; 
• epilepsy diagnosis and epileptic seizure focus 

detection [17-19]; 
• Parkinson’s Disease detection [20, 21], 
• mental disorders detection and prediction  

[22, 23]; 
• neonatal EEG interpretation support [24]. 
Studies focusing on the recognition of emotions 

based on the analysis of EEG signals can also be found. 
For instance, the study [25] focuses on the 
development of an emotion recognition model based 
on the analysis of EEG signals in order to assess the 
quality and user satisfaction with the product, while the 
study [26] uses the emotion recognition mechanism to 
assess the effect of public art psychotherapy and 
determine the public’s evaluation of public art. The 
paper [27] reviews the possibilities of using generative 
AI for emotion recognition. Another application of 
EEG analysis that is gaining popularity may be motor 
imagery. Motor imagery may be understood as 
performing a movement on a mental level, without the 
participation of muscles, and which may lead to the 
activation of the same areas of the brain as the actual 
performance of such movements [28]. Among the 
papers reviews this topic, the studies [29, 30] may be 
indicated. In addition, among the topics considered by 
researchers in the presented scope, the analysis of 
cognitive load and attention detection may be pointed 
out. For instance, the reviews [31-33] are focused on 
this research topic. Among the classes of algorithms 
used in the automatic analysis of EEG signals, 
Machine Learning (ML) and Deep Learning (DL) 
methods are gaining popularity. For instance, the paper 
[34] reviews the classes of supervised classification 
algorithms used, reporting Support Vector Machine 
(SVM), Convolutional Neural Network (CNN),  
k-nearest neighbors (KNN), and Random Forest (RF) 
as some of the potentially accurate ones for 
classification tasks in the discussed scope. 
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Fig. 1. The proposed protocol design. 
 
 

 
 

Fig. 2. Text exposure sequence used in the test. 
 

 
2.2. Results Medical Interpretation 

 
The proposed protocol enables investigation of 

relationship between objectively evaluated emotional 
trait and safe performance of pilot candidate. Due to 
exposition to stimuli incorporated in the protocol the 
adaptability of candidates and adaptive designs can be 
identified. Anxiety behaviors which lead to difficulty 
in concentration cause negative changes to both the 
psychomotor and attention skills in dynamic tasks 
related to aviation. Thus, identification of the tendency 
towards anxiety enables the application of cognitive 
and behavioral treatments for anxiety by the 
application of mindfulness practices like Mindfulness-
Based Stress Reduction and Mindfulness-Based 
Cognitive Therapy. 

 
 

3. Conclusion 
 

We propose a protocol (Fig. 1) for integrating 
automated and objective analysis of emotional trait 
with the identification of adaptability design and 
anxiety behavior. Next, the revealed profile will be 
used for modification of pilot training, and when 
needed to the application of therapies Currently, the 
developed test bench is undergoing validation and 
minor modifications are being made to improve the test 
run. In parallel, appropriate computer tools are being 
developed, using NN to analyze EEG waveforms and 
aggregate the collected data. 
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Summary: Virtual reality has become an innovative method that finds applications in Health Care. One of the most popular 
applications of VR/AR in the health care area is Digital Therapeutics (DTx).The paper presents a rehabilitation system using 
virtual reality (VR) and augmented reality (AR). AR, implemented as a ‘Smart Mirror’, is used as an intelligent interface that, 
once a person is recognized, personalizes the subsequent dialogue with the user. Next, VR offers a dedicated, for the person 
set of rehabilitation exercises. The elaborated VR/AR rehabilitation system is currently used in everyday practice in Institute 
of Neurological Disorders at Poznan University of Medical Sciences. We have offered this approach to more than  
100 post-stroke patients. To determine the tolerance of patients to the new rehabilitation technique, we conducted a survey and 
measurement of selected parameters of vital signs. The elaborate questionnaire included the presence of vertigo, nausea, 
diplopia, headache, chest pain, arrhythmia, anxiety, and sweating before and after VR training. We have also asked whether 
the patients are familiar with the use of computers / smartphones / games at home, and the educational level and profession 
were considered. Measurements of the tolerance and effectiveness (NHISS) show that the proposed solution supports the 
neurorehabilitation process well. 
 
Keywords: Metaverse, Neurology, Rehabilitation, Augmented reality, Virtual reality. 
 

 
1. Introduction 
 

Healthcare is one of the most important 
contributors to the overall physical, social, and mental 
well-being of people around the world. Augmented 
and virtual reality in the healthcare market has been 
valued at more than $2.5 billion in 2022 and is 
projected to register more than 21 % CAGR in the 
forest period [1]. Emerging new technologies are being 
used, when possible, in the healthcare field. Metaverse 
is one of these technologies, so it is being used in many 
areas of healthcare care [2, 3]. 

Neurological disorders represent one of the leading 
causes of disability and death globally. The burden of 
disability and mortality due to nervous system 
pathologies is steadily increasing, with recent data 
showing a 39 % increase in deaths related to 
neurological diseases in the past three decades. In 
2021, 43 % of the global population, approximately  
3.4 billion individuals, was reported to be affected by 
neurological conditions, a much higher figure than 
previously estimated [4]. These statistics underscore 
the urgent need for innovative solutions to address the 
growing global burden of neurological diseases. 

One of the most popular applications of VR/AR in 
the Health Care area is Digital Therapeutics (DTx). It 
can be defined as evidence-based therapeutic 
interventions driven by software to prevent, manage, 
or treat a medical disorder or disease. In other words, 
DTx are patient-facing software applications that help 
patients treat, prevent or manage a disease and that 
have proven clinical benefit. DTx is expanding greatly, 
providing metaverse healthcare opportunities. This 

field offers great use of cognitive therapy, support 
groups, psychiatric assessments, and rehabilitation 
with the help of haptic sensors. Physical therapy is easy 
and responsive using AR and VR in the metaverse of 
healthcare. As presented in Fig. 1 neurology and 
psychiatry are the main areas of medicine where DTx 
is applicable. 

 

 
 

Fig. 1. Neurology and psychiatry as the main areas of DTx 
applications. 

 
Virtual reality has become an innovative method of 

rehabilitation over the past decade. By simulating 
everyday activities, stroke survivors can improve their 
self-care skills in a way that is usually not possible in 
a hospital setting. This article presents a virtual reality 
supported neurorehabilitation system. The innovative 
part of it is a patient communication environment 
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using the ‘Smart Mirror’ developed and implemented 
by the authors. The system is designed to be used for 
patients and/or residents of a nursing home. In our 
case, it is dedicated to a group of patients who are 
undergoing rehabilitation after a stroke. The ‘Smart 
Mirror’ uses augmented reality to communicate with 

the patient and then the system can propose virtual 
reality exercises in the set of rehabilitation exercises. 
Thus, the system is an example of metaverse (AR/VR) 
application in the process of patient rehabilitation. The 
general idea of the proposed system is illustrated  
in Fig. 2. 

 
 

 
 

Fig. 2. Illustration of the proposed system implementation. 
 
 

2. Virtual Rehabilitation System 
 
2.1. Medical Background 
 

The rehabilitation process begins in the early stages 
of acute cerebral ischemia. Later, it continues during 
the patient's stay in the stroke unit. Disabilities caused 
by stroke vary, so it is necessary to adapt post-stroke 
rehabilitation to the needs of post-stroke patients and 
their daily activities at home. Most stroke survivors are 
discharged home. This raises the question of how to 
design rehabilitation training suitable for use at home. 
To initiate the adaptation process, some stroke centers 
(such as the University Hospital in Poznan, Poland) 
organize "model apartments" for initial patient 
training. Using various objects such as cabinets, sink, 
irons, spoons, cups, etc. as physical therapy tools in the 
"model apartment" supporting the patient's daily 
activities at home. As technology becomes more 
common and familiar, it can support rehabilitation in 
the hospital and/or home environment. 

 
 

2.2. Virtual Rehabilitation System 
 

Currently, the developed system is used in the 
rehabilitation of neurological patients (e.g., after 
strokes). As is well known, the rehabilitation process 
in the case of neurological diseases is a long process, 
and after a period of hospitalization, then, already at 
home, the patient must independently perform, often 
tedious, various exercises. Some of these exercises can 
be proposed to be performed in virtual reality. 
Performing these exercises in virtual reality helps 
make them more attractive and thus more effective (the 

patient is more likely to perform the exercises in a 
properly designed and attractive virtual reality). Of 
course, this is assuming that the motor requirements 
appropriate to the set of exercises are met. 

The use of technology and virtual reality enables 
the dissemination of neurorehabilitation, enabling 
reaching such goals like: 

• Physical and cognitive restoration; 
• Enrichment of rehabilitation techniques; 
• Increased effectiveness 
•Wider access to society; 
• Teleneurorehabilitation. 
Neurorehabilitation, supported with simple, 

everyday activity tools and advanced technology, 
opens possibilities that improve motor training and 
cognitive functions and enables the treatment of 
crippling symptoms like neglect syndrome. 

 
 

2.3. Smart Mirror 
 
The Smart Mirror (presented in Fig. 3) allows the 

patient to be identified through facial recognition, and 
then there is a personalized dialogue with the patient. 
Upon recognition of the patient, the system proposes 
to the patient a set of exercises dedicated to him 
(previously planned by a doctor and/or rehabilitant). 

The proposal is not only personalized for the 
patient, but also takes into account additional 
information such as the time of exercise, current 
weather conditions (weather forecast), the patient's 
mood, etc. The substantive scope of the system 
software is consulted with neurologists and 
neurorehabilitation specialists and implemented in the 
system accordingly. After recognition of the patient, 
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the system proposes to the patient a set of exercises 
dedicated to him (previously planned by a doctor 
and/or rehabilitant). 

The system runs on a Raspberry Pi platform. 
However, the platform communicates with a more 
powerful computer that runs the main application. It is 

a web application implemented in the Django 
environment. Face recognition is implemented using 
the PyTorch and OpenCV libraries. The required data 
are stored in an SQL database (in our case MariaDB). 
The software structure of the system is shown  
in Fig. 4. 

 
 

 
 

Fig. 3. Smart Mirror implementation. 
 
 

 
 

Fig. 4. Software environments used in the application. 
 
 
The facial recognition function in Smart Mirror is 

powered by algorithms based on artificial intelligence 
that can recognize faces and compare them with faces 
in the system database. 

 
2.3. Virtual Exercises 

 
The virtual rehabilitation system will propose the 

most appropriate and/or expected virtual interaction 
with the recognized person. The illustration of the 
system usage scenario is presented in Fig. 5. 

 

 
 

Fig. 5. Example of the system usage scenario. 

Those who plan the rehabilitation process can 
create a library of virtual activities dedicated to a 
particular patient. These can be games/activities that 
improve the patient's motor skills, or games that 
exercise mental activity. We have proposed to our 
patients simple games/exercises like for example a 
virtual fishing or origami. In fact, origami is a good 
example, since it requires hand-eye coordination, 
develops fine motor skills, and supports mental 
concentration, all of which stimulate the brain. The 
origami exercise is done in virtual reality. Of course, 
there are many other existing applications that can be 
used for rehabilitation purposes [5]. 

 
 

3. Clinical Rehabilitation Experience 
 
The VR Rehabilitation System is currently used in 

everyday practice in the Stroke Unit of the University 
Hospital in Poznan. We have offered this approach to 
more than 100 patients after stroke. Disability caused 
by stroke vary and there is a need for personalized 
post-stroke rehabilitation. The success of post-stroke 
rehabilitation depends on many factors among them: 
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patient pre-stroke activity, circulatory sufficiency, the 
severity and location of the stroke, and support from 
family and caregivers. Active participation of the 
stroke patient in the rehabilitation process is crucial to 
optimal recovery. Stroke patients are mainly older 
people who are only sometimes familiar with computer 
technology. In our pilot program with VR 
rehabilitation, we wanted to answer the following 
questions: 

• What is the tolerance of this approach? 
• What is its effectiveness? 
To determine the tolerance of patients to the new 

rehabilitation technique, we conducted a survey and 
measurement of selected parameters of vital signs. 

The elaborate questionnaire included the presence 
of vertigo, nausea, diplopia, headache, chest pain, 
arrhythmia, anxiety, and sweating before and after VR 
training. We have also asked whether the patients are 
familiar with the use of computers / smartphones / 
games at home, and the educational level and 
profession were considered. 

Blood pressure, heart rate, and ECG are monitored 
before and after VR training. The evaluation of the 
patients was performed at baseline and after 7 days of 
training. The effectiveness of VR rehabilitation was 
measured using the National Institutes of Health 
Stroke Scale (NIHSS). The NIHSS is a 15-item 
neurological examination stroke scale used to assess 
the effect of acute cerebral infarction on levels of 
consciousness, language, neglect, loss of visual field, 
extraocular movement, motor strength, ataxia, 
dysarthria, and sensory loss. Ratings for each item are 
scored on a 3- to 5-point scale, with 0 as normal, and 
there is an allowance for untestable items. Scores range 
from 0 to 42, with higher scores indicating greater 
severity. Stroke severity may be stratified on the basis 
of NIHSS scores as follows [6]: 

• Very Severe: 21–42; 
• Severe: 16–20; 
• Mild to Moderately Severe: 5–15; 
• Mild: 1–4. 
A trained observer rates the patent’s ability to 

answer questions and perform activities, without 
coaching and without making assumptions about what 
the patient can do. 

Based on the results of 102 patients involved in the 
program, we can conclude that there are no differences 
in questionnaire items before and after the VR 
neurorehabilitation. The same we can conclude based 
on the measured vital signs. Figs. 6-8, present the 
statistical distribution of Systolic Blood Pressure 
(SBP), Diastolic Blood Pleasure (DBP) and Heart Rate 
measurements before (SBP1, DBP1, HR1) and after 
(SBP2, SBP2, HR2) rehabilitation activities in the VR 
environment. 

The results obtained show a very good response of 
patients to exercise using VR technology. Both the 
feedback received in the questionnaires and the 
measurements of blood pressure and heart rate did not 
reveal disturbing information regarding the patient’s 
tolerance to this type of exercise. 

 
 

Fig. 6. SBP before (1) and after (2) exercises. 
 
 

 
 

Fig. 7. DBP before (1) and after (2) exercises. 
 
 

 
 

Fig. 8. HR before (1) and after (2) exercises. 
 
 

Lastly, the most importantly, the comparison of the 
NIHSS (as presented in Fig. 9) shows the effect of the 
proposed VR based rehabilitation. The NIHSS was 
improved from 4.707 to 2.155. 

 
 

 
 

Fig. 9. The comparison of the NIHSS before (1) and after 
(2) the exercises. 

 
 
We can conclude that the exercises carried out with 

patients using the described system produce positive 
results and tolerance is acceptable. 
 
 
4. Conclusions 

 
VR-based therapy can provide a positive learning 

experience, and be engaging and motivating exercises 
carried out with patients using the described system 
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produce positive results and the tolerance is 
acceptable. Further expansion of the palette of 
exercises available in virtual reality will reach homes 
of patients (e.g., elderly persons) and will allow 
telerehabilitation. Telerehabilitation trainings can be 
developed and supported by the implementation of 
human–computer interfaces (HCI). 

Over the past decade, virtual reality has become a 
new way of rehabilitation from stroke and a unique 
method of treatment. By replicating actual activities, 
people recovering from stroke can perform self-care 
tasks in an environment that is usually impossible to 
recreate in the hospital environment. Virtual reality is 
increasingly being used in this context and its potential 
medical applications are still not fully understood. The 
profound impact on stroke survivors is obvious, as they 
use VR technology to recreate important daily 
activities, promote new neural connections, and 
improve their self-confidence. VR-based stroke games 
are known to increase the attendance of the patients, 
boost their morale, and provide them with self-
confidence to carry on with their lives. Virtual reality 
exercises for stroke are known to speed up the recovery 
process, provide muscle strength, and also bring 
balance to the body. VR-based journeys are known to 
provide calm and relaxation to patients’ stressful 
minds. As more and more survivors use this 
technology to retrain their limbs, the future of virtual 
reality in stroke recovery looks promising. VR-based 
therapy can provide a positive learning experience and 
be engaging and motivating. 

The review [7] shows that telerehabilitation in 
stroke patients is superior or similar to conventional 
rehabilitation in clinical outcomes and is used as a 
complementary therapy or as alternative treatments. 
More importantly, TR provides access to rehabilitation 
services for a large number of patients with 
immobility, living in remote areas, and during the 
COVID-19 pandemic or similar events. 

As is usually the case with new technologies, it is 
important to strike a balance and detect the good points 
of new developments. If they can contribute to saving 
health, they should be used, keeping in mind the 
principle of doing no harm. 
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Summary: Being able to prove a dataset was used to train a particular deep learning model is a real need that can be used to 
demonstrate dataset unauthorized use or reuse. It is also a technical challenge. Recently, radioactive data techniques which 
modify data so that it leaves a trace in any model trained on it have been proposed to solve this challenge for image datasets. 
But they have yet to be extended to other domains. In this paper, we introduce R-TAB, the first technique implementing the 
concept of radioactive data for tabular datasets. R-TAB is a radioactive-based approach that modifies selected database 
attributes under correlation constraints to leave a retrievable trace in any model trained on these data. Experiments conducted 
on several datasets and models demonstrate that our solution is robust in terms of radioactivity detection while maintaining 
model training performance. Finally, we provide an analysis of constraints and criteria such techniques for tabular datasets 
have to consider going forward. 
 
Keywords: Deep learning, Radioactive data, Databases, Tabular data, Ownership protection. 
 

 
1. Introduction 
 

As Deep Learning models are trained on  
ever-increasing amounts of data, the issue of 
unauthorized collection and use or re-use of datasets 
has become a serious challenge. While legal 
frameworks and laws protect against such unconsented 
exploitation of data [1], in practice, it remains very 
hard to detect that a dataset has been used for the 
training of a particular model. If some solutions based 
on a posteriori membership inference techniques have 
been proposed [2], they appear inaccurate and demand 
heavy resources and knowledge of the model. More 
recently, a few techniques based on the concept of 
radioactive data [3] have been introduced. They rely on 
the injection of data isotopes [4] which are slightly 
modified versions of the original data, with as an 
objective to leave an identifiable trace in the model 
trained on these data. The trace then serves as proof 
that the model was trained on a given dataset. To the 
best of our knowledge, radioactive data techniques 
focus on image datasets. No proposal exists yet for 
tabular data, which remains omnipresent in many 
ownership-sensitive domains like finance and 
healthcare. In this paper, we introduce the first 
technique to generate radioactive tabular data while 
underlying the main constraints to satisfy. The rest of 
this paper is organized as follows. Section 2 comes 
back on image radioactive techniques. Section 3 details 
our scheme. Section 4 provides some experimental 
results demonstrating our solution detects radioactive 
models trained on some tabular data while preserving 
the accuracy of the model on its main task. Section 5 
provides points of discussion. Section 6 concludes  
this paper. 

 

2. Related Works 
 

Sableyrolles et al. [5] were the first to introduce the 
concept of radioactive data for image classification. By 
modifying some images in a dataset, they align the 
classifier layer of the model with a secret vector. For 
verification, they compute the cosine distance of the 
classifier of a model to a secret vector and, if it is high 
enough, the proof is given that the model was trained 
on the isotope samples. Solutions proposed 
subsequently embrace the same principles. 

Existing solutions from literature can fit into one of 
four categories depending on two criteria: the way 
radioactive isotopes of samples are generated and the 
inspection technique of the trained model, both being 
linked. We thus suggest the following classification: 

- White-box vs. Black-box radioactive methods – 
To detect the trace left by the radioactive dataset, 
some solutions follow a white-box approach by 
inspecting the model parameters, like [5] which 
examines the direction of the classifier layer. 
Other solutions, referred to as black-box 
schemes, such as [4] or [6] only need access to 
the outputs of the model to decide if this one has 
been trained on a radioactive image dataset. 

- Fixed vs. Guided radioactive methods – To 
generate radioactive isotopes, these solutions rely 
on two classes of techniques: i) the insertion of a 
predefined noise or mark in the original samples; 
ii) the modification of said samples under some 
objective function or constraint. We propose to 
refer to the former category as “fixed” isotope 
creation, the second as “guided” isotope creation. 
An example of a fixed black-box radioactive 
scheme is data isotopes [4]. Their idea is to add a 
mark to images pertaining to one target class so 
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as to add artificial features to this class for 
insertion. The radioactive model will associate 
these features to this class. At inspection, the 
trained model is fed with images from another 
class both with and without the mark. If the model 
was trained on the isotopes, an increase towards 
the radioactive class is observed in the output 
probabilities for these samples. To mark images, 
they superpose a predetermined image selected 
from outside the dataset over them. This is a fixed 
modification. For detection, they only need 
access to the probabilities output by the model. 
This is a black-box condition. 

Table 1 provides the classification of the different 
radioactive image data methods we found in literature. 
We note that most solutions are guided  
black-box methods. 

 
Table 1. Classification of radioactive image data techniques 

in literature. Note that the authors in [7] present both  
a black-box and white-box version of their scheme. 
 

 White-box Black-box 

Guided 
Sablayrolles et al. [5] 

Anti-Neuron* [7] 

Metapoison [8] 
Anti-Neuron* [7] 

Untargeted Backdoor [9]
Data Taggants [6] 

Fixed Catch Me If You Can [10] Data Isotopes [4] 

 
3. Proposed Method 
 

The radioactive tabular dataset solution we 
propose, R-TAB, is a guided black-box scheme in the 
context of classification tasks. More specifically, it 
belongs to a subclass of black-box methods the 
radioactivity process of which consists in adding some 
characteristics or features, called “spurious” features, 
to samples from one dataset class, the radioactive class. 
In images, this corresponds to inserting content in 
unused regions of the image [4] or adding some noise 
[10]. Any model trained with the radioactive samples 
will learn to associate these features to the radioactive 
class. The idea is that if samples from another class to 
which these artificial characteristics have been added 
are presented to the radioactive model, a bias in class 
probabilities towards the radioactive class is expected. 
When detected, this bias proves that the model was 
trained on the radioactive dataset. 

To detail how to adapt this concept to tabular data, 
let us consider a relational database constituted of a 
single table ܶ of ܰ tuples and ܭ attributes:  ܶ = .௨ݐ}  ௨ has aݐ ଵ.., where each tuple	ୀ	ଵ..ே,௩	ୀ	௩}௨ܣ
class label ݐ௨.  One of the main constraints to .ܥ
consider is that, unlike images, which can contain up 
to millions of pixels, a tuple is usually limited to a few 
attributes. It is therefore difficult to imagine being able 
to add noise to a single tuple. Thus, instead of adding 
a specific mark to each sample, we suggest inserting 
the spurious features in the statistical properties of one 
secretly selected class ܥଵ, more specifically in the joint 
distribution of its most relevant attributes. The idea 
then is to verify that the radioactive model, if inferred 

with the samples of another class ܥ modified similarly 
as previously, provide higher ܥଵ probabilities for these 
samples. We detail these marking and detection 
processes below. 

 
3.1. Radioactive Dataset Creation 
 

This process works as follows: 
1. Secretly select the radioactive class ܥଵ; 
2. Compute the pairwise squared Pearson 

correlation coefficient ݎ	[11] of each two 
attributes from ܣଵ to ܣ, across ܥଵ samples; 

3. Select the two most correlated attributes ܣ௭  
and ܣ௪; 

4. Transform ܥଵ samples into isotopes ܥଵ∗ by 
modifying ܣ௭	values so as to slightly  
de-correlate it from ܣ௪ while keeping its 
distribution change minimal. This can be 
achieved using a common gradient  
descent-based optimization process with the 
following loss function: 

5.  ℒ(A௭, A௪)  =  rଶ(A௭,  A௪)  +  λห|μ௭ −− μ௭|หଶ  +  αห|σ௪  −  σ௪ |หଶ; 
where ߤ and ߪ denote the attribute mean and 
standard deviation, respectively, and ߣ and ߙ 
are weights to be tuned. The first term describes 
the correlation to reduce while the two others 
act as regularization to prevent the excessive 
distortion of the distribution of ܣ௭. Once the 
radioactive dataset is created, it can be shared. 

 
3.2. Model Inspection 
 

To determine if a model ܯ	was trained using 
radioactive data, one just has to follow these steps: 1. Select tuples from a class ܥଶ different from ܥଵ;	

2. Make a radioactive version ܥଶ∗ of these tuples 
by applying the same process as above, on the 
same attributes ܣ௭ and ܣ௪; 

3. Compute class probabilities by passing both 
versions of the samples to the model; 

4. To decide whether a bias towards ܥଵ appears in 
the classification probabilities of radioactive 
tuples ܥଶ∗, we perform a Student’s one-sided 
paired samples t-test [12]. It outputs a p-value 
for the null hypothesis ܪ:“The average class 
probability for C1 is equal or less in the 
radioactive group”. If below a certain 
threshold, p-value confirms the model was 
trained on the radioactive dataset, highlighting 
a statistically significant increase in the average 
of class probabilities for C1 for the radioactive 
samples. 

 
4. Experimental Results 
 
4.1. Datasets, Classification Task and Evaluation  
       Criteria 
 

For this version of our paper, we provide results on 
three references open-source classification datasets: 
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UCI Forest Cover type dataset [13], UCI EEG Eye 
State dataset [14] and the Turing Institue vehicle 
recognition dataset [15]. We will refer to them as 
Covertype, EEG and Vehicle. We provide descriptors 
of the datasets below: 

- Covertype: Consists of cartographic data for 
several 30 × 30 meter forest cells and the 
corresponding cover (tree) type. The target task is 
to predict the type of tree present in a given cell 
from its geographic data; 

- EEG: Tracks the values measured during a  
117 second continuous electroencephalogram 
and the state of the patient’s eye detected via a 
camera. The target task is to predict whether a 
patient’s eye is closed or open given 
electroencephalogram measures; 

- Vehicle: Contains the numerical descriptors of 
2D silhouettes of four different vehicles under 
different angles. The silhouettes were captured by 
a camera and processed to extract numerical 
features. The target task is to classify a silhouette 
into the corresponding vehicle given its 
numerical descriptors. Please note that for 
simplicity purposes we worked with a simplified 
version of the dataset [16], where the task is only 
to determine if the given silhouette is that of a  
car or not. 

Table 2 contains the descriptors of the  
three datasets. 
 
 
Table 2. Description of datasets used for our experiences. 

 
Dataset CoverType EEG Vehicle 

No. Samples 581,012 14,980 98,528 

No. Features 54 14 100 

No. Classes 7 2 2 

Feature 
Type 

Numeric, 
Categorical 

Numeric Numeric 

 
 

As a model, we use the ResNet-inspired 
architecture for tabular data classification introduced 
in [17]. It works similarly to the ResNet architecture 
for image classification [18], with the difference that 
convolutional blocks are replaced with linear layers. 
They demonstrate that it serves as a good baseline 
architecture for a wide variety of tabular data 
classification tasks [17]. We adapt the size and number 
of blocks in the model for each dataset to what 
achieves good baseline scores in the absence of 
radioactivity (see Section 4.2). As a second model, we 
also use a simple multi-layer perceptron, made of three 
192-parameter layers. 

Two metrics were considered to evaluate the 
performance of our method: 

- Main classification task performance (ACC) – 
As radioactivity should not harm the dataset 
usability, we track the accuracy (ACC 
Radioactive) of models trained on the radioactive 
vs. non-radioactive dataset on an unseen test set. 

It should not decrease compared to the one of the 
model trained on non-radioactive data  
(ACC Base). 

- Radioactive model detection (p-value) – The  
p-value corresponding to the null hypothesis ܪ 
(see Section 3.2) is used as a detection 
performance score. It should be small. We 
decided on a threshold of 0.1, which corresponds 
to a 90 % probability of the model being 
radioactive. 

 
 

4.2. Experimental Setup 
 

To obtain a baseline performance, we split each 
dataset into 60 % training data and 20 % validation and 
test data. Then, we manually perform hyperparameter 
search to settle on the best performing models and 
parameters. For Covertype, EEG and Vehicle 
respectfully, we settle on a (2,192,2), (3,192,2) and 
(3,1024,2) ResNet where the parentheses represent the 
number of hidden blocks, the first block’s dimension 
and the following blocks dimension multiplier. 

For the covertype dataset, we used “Spruce/Fir” as 
radioactive class (ܥଵ) and “Lodgepole Pine” as 
inspection class (ܥଶ). We created isotopes by 
modifying the “hillshade_9am” (ܣ௭) attribute with 
regards to the “hillshade_3pm” attribute (ܣ௪), 
performing 120 epochs and setting λ = α = 0.4. For 
both EEG and Vehicle, we used the ”0” class as a 
radioactive class and the ”1” class for inspection. EEG 
isotopes were created by modifying the attribute 
”FC5” with regards to ”O1” over 1000 epochs with a 
2.0 learning rate and λ = α = 0.95. Vehicle isotopes 
were created by modifying the attribute ”X48” with 
regards to ”X49” over 500 epochs with a 3.0 learning 
rate and λ = α = 0.95. 
 
 
4.3. Experimental Results 
 

Table 3 reports the results we obtained in terms of 
baseline and radioactive models’ accuracies and of 
model radioactivity detection. Notice that the p-value 
is to” X given in average over 3 trials like in [4], in 
order to offset the effects of random batching. It can be 
seen that, on different data sets of different content, 
classification purposes and sizes, our method verifies 
the two criteria. Accuracy on the test sets is preserved, 
while obtaining p-values under our fixed threshold in 
all experiments, i.e., we detect that the model was 
trained on radioactive data every time. 
 
 

Table 3. Experimental results for the cover type dataset. 
 

Dataset ACC Base ACC Radioactive p-value 

CoverType 0.938 0.943 5.4 * 10-2 

EEG 0.853 0.852 2.5 * 10-6 

Vehicle 0.862 0.848 5.9 * 10-2 
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Since our method is model-agnostic. i.e., it does not 
make prior hypotheses on the type of model that will 
be trained on the data unlike methods such as [5] or [6]. 
We also tested it on a linear multi-layer perceptron (see 
Section 4.1). But, due to time constraints, we were only 
able to do so for the Vehicle datasets. Table 4 provides 
the performance results we obtained using the same 
radioactivity parameters as previously. It can be seen 
that our radioactive isotopes are still effective when 
training on another class of models than ResNet. It is 
reasonable to assume the architecture independence of 
our scheme. 
 
 

Table 4. Experimental results for the Vehicle dataset  
with an MLP architecture. 

 
Dataset ACC (base) ACC (radioactive) p-value 

Vehicle 0.867 0.871 9.5 * 10-21 

 
 
Since real-life applications of datasets go beyond 

just the training of machine learning models (e.g., 
statistical studies and data visualization). We also 
study the impact that our approach can have on 
different statistical properties of these data. We report 
in Table 5 the standard deviation and mean of the 
distribution of the modified attributes in each dataset. 
As shown, these properties are not heavily impacted by 
our method. In detail, the insertion of isotopes 
introduces a negligible distortion for both the 
CoverType and EEG datasets. For Vehicle, this shift is 
less negligible. But as illustrated in Fig. 1 which 
provides a point cloud visualization of the modified 
samples before and after applying radioactivity, the 
distribution of the radioactive feature values is still 
more or less preserved. From this standpoint, one can 
assume that our method should not harm the usability 
of altered datasets. 
 
 

Table 5. The impact of radioactivity on the statistics  
of the modified attribute for each dataset. 

 

Dataset 
Mean Standard deviation 

Base Isotope Base  Isotope 

CoverType 21.998 21.999 24.820 24.821 

EEG 4200.391 4200.233 7026.078 7026.082 

Vehicle -1.532 -2.105 1.108 1.276 

 
 
Finally, the other criterion to account for in real-life 

applicability is computational overhead. In machine 
learning experiments, training time scales with the size 
of data and models. More clearly, training epochs are 
longer when there are more samples, more features, 
and when the trained model has more trainable 
parameters. It is thus important that the injection cost 
of isotopes is not significant compared to the training 
of the model. Table 6 reports the different times taken 
by both the injection and classification tasks in our 

experiments. One can see that for all three datasets the 
radioactive modification time is negligible compared 
to model training, representing only percentiles of the 
duration of a single training epoch. 

 
 

 
 

Fig. 1. Scatter plot of the “X48” attribute values  
of the radioactive class from the Vehicle dataset before  
and after modification (Each point corresponds to a single 
sample from the radioactive class. X-axis shows the attribute 
value. Y-axis is an arbitrary index for each sample). 
 
 
Table 6. Comparison of computation time necessary  
for the different steps of the training of a radioactive model. 
Training is the time needed for one training epoch. Isotope is 
the time needed for the entire radioactivity process. Ratio is 
the fraction of training time it represents. 

 
Dataset Training Isotope Ratio 

CoverType 79.62 s 0.84 s 1.05 % 

EEG 49.38 s 2.67 s 5.4 % 

Vehicle 17.617 s 0.17 s 0.96 % 

 
 
5. Discussion 
 

While the above experiments prove the 
effectiveness of our method, and that the concept of 
radioactive data can be applied to tabular datasets, 
several additional points have to be discussed for a 
more general application. 

First, it is important to minimize data distortion 
when injecting isotopes for two reasons: the 
perceptibility of the radioactivity, and the usability of 
the dataset. Up to now, all radioactive image data 
methods in literature do not satisfy the former 
criterion, as modifications to images are easy to spot 
by a human observer and stand out from natural 
samples. Tabular data suffer less from this problem, 
because it is more difficult for a human being to 
interpret individual samples characterized by a few 
dozen attributes. Nevertheless, it is highly probable 
that the majority of users will carry out simple data 
statistics and analyses. It is therefore important that the 
radioactive data do not appear as anomalies at the 
statistical level. Regarding dataset usability and our 
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scheme which creates radioactive isotopes by adding 
noise through an optimization process, there exists an 
implicit lower bound for the loss value which 
corresponds to a level of noise beyond which the data 
usability degrades. We enforce the preservation of the 
distribution of data; through mean and standard 
deviation; as a usability-preserving criterion, but it 
may not be sufficient in more complex analyses. 

The robustness of radioactive data in the face of 
modifications, even if this was beyond the scope of our 
article, is another property to be taken into account. 
One should at least consider non-malicious 
modifications, that is to say data processing that does 
not aim to remove the radioactive isotopes, but which 
could nevertheless have an impact on them. More 
clearly, it is standard in machine learning to preprocess 
data before using it for training, by normalizing it or 
removing outliers for example. In the context of 
radioactive images, [5] takes into account common 
preprocessing operations on images for example. 

In this work, we propose the first radioactive 
protection for datasets. It is complementary to other 
dataset protection tools for ownership verification 
techniques such as watermarking and membership 
inference. 

Watermarking is mainly devoted to the ownership 
protection of dataset or to the fight against information 
leaks. Many solutions have been proposed to 
watermark tabular data [19-21]. Its basic principle 
consists in inserting a watermark (equivalently a 
message or a proof of ownership or the recipient’s 
identifier) in the dataset by modifying its attributes’ 
values or by injecting false attributes. However, unlike 
radioactive isotopes, the watermark does not 
inherently transfer to models trained on watermarked 
data. However, both mechanisms introduce noise in 
the dataset, in general. 

On their side, membership inference methods aim 
to determine whether a specific sample was part of the 
training set. They usually assume that a model shows 
stronger responses in terms of higher-class probability, 
higher activation in neurons, and so on, for samples 
seen during its training phase. As stated, membership 
inference and radioactive data both rely on the fact 
model overfit some training data characteristics. They 
are however completely different in their functioning, 
namely in the level of knowledge and access the user 
has over the dataset to be tracked [3]. Radioactive data 
is a dataset-level technique where the dataset owner 
injects the spurious features to be memorized by the 
model; features unlikely to be naturally present in 
samples. Membership inference tools do not use such 
features. Moreover, even though a membership 
inference can identify samples from the training data, 
it does not mean a specific dataset has been used as 
several datasets can share several samples. That is the 
case of medical records for example. As it is not 
uncommon for a patient to have visited several 
hospitals, which means that their data appears in 
several datasets. 
 
 

6. Conclusion 
 

In this work, we introduce R-TAB, the first 
radioactive data approach for tabular datasets to detect 
their unauthorized use for training machine learning 
models. It takes into account the specificities of tabular 
datasets to extend similar schemes proposed for 
images. As another originality, it creates isotopes by 
introducing spurious features in some secret attributes 
while preserving attributes’ correlation. We tested the 
method as a proof of concept on three real datasets for 
classification applications and with two kinds of 
models: ResNet and MLP. As demonstrated, our 
method preserves the model accuracy while allowing 
good detection. We also discuss some of the 
constraints to satisfy when creating radioactive 
datasets. Future work will focus on how to better 
preserve dataset usability and to the generalization of 
our approach to other kinds of machine learning 
algorithms. 
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Summary: Accurate mineral identification and classification is crucial for effective exploration, resource management, and 
industrial applications in resource-rich regions. Recent advances in artificial intelligence (AI) have enabled automated mineral 
classification, with deep learning approaches such as Convolutional Neural Networks (CNNs) widely adopted. However, 
conventional CNN-based models often fail to capture fine-grained features, limiting their performance in complex scenarios. 
Motivated by breakthroughs in image captioning via Bootstrapped Language-Image Pre-training, we propose a novel  
Vision-Language Pre-training (VLP) approach, MineralBLIP, to improve mineral classification accuracy. MineralBLIP 
employs a multimodal framework that integrates computer vision and natural language processing techniques. Experimental 
evaluations on two mineral image datasets demonstrate that MineralBLIP achieves an average F1-score of 84 %, markedly 
surpassing the CNN model’s 75 %. These results underscore the promise of vision-language models in advancing mineral 
classification research and the role of advanced AI in mineral identification and classification research leading to sustainable 
mine development. 
 
Keywords: Minerals image classification, CNN, Vision language pre-training, BLIP. 
 

 
1. Introduction 
 

Mineral classification is vital for successful 
mining, resource management, and industrial 
applications, as accurate identification informs 
resource estimation, environmental assessment, and 
mineral processing. Traditional methods rely on 
physical inspection and manual analysis, which are 
time-consuming and prone to human error [1]. 
Consequently, the field has increasingly turned to 
automated approaches using machine learning (ML) 
and deep learning (DL) techniques to extract 
meaningful features from mineral images. 

Convolutional Neural Networks (CNNs) have been 
widely used for mineral classification due to their 
ability to learn spatial hierarchies in images and 
capture patterns in visual data [2, 3]. Several studies 
have demonstrated the success of CNNs in this domain 
[4, 5]. However, CNNs struggle with capturing  
long-range dependencies within an image as they rely 
on localized receptive fields, limiting their ability to 
recognize complex, context-dependent relationships in 
mineral images [6]. In addition, CNNs require large 
amounts of labeled data for effective training, which 
may not always be available in very specialized 
domains such as mineral and rock classification. 

Recent advances in vision-language models 
(VLMs) have emerged as promising alternatives to 
traditional CNNs for image classification, particularly 
in complex tasks such as mineral image analysis. 
Unlike CNNs, VLMs integrate both visual and textual 

modalities to enrich feature representation. Vision 
Transformer (ViT) architectures, for example, 
leverage self-attention mechanisms to capture global 
dependencies across an image, allowing them to learn 
relationships among distant pixels [7]. Building on 
this, models such as Bootstrapped Language-Image 
Pre-training (BLIP) incorporate a captioning and 
filtering process that extracts subtle semantic details 
even from limited datasets [8]. This multimodal 
approach effectively bridges the gaps left by 
conventional CNNs, offering improved transfer 
learning and fine-tuning capabilities for domain-
specific tasks such as mineral classification [9-11]. 

In this paper, we harness the strengths of  
vision-language pre-training (VLP) by proposing 
MineralBLIP, a model that adapts the BLIP framework 
for mineral image classification. By combining the 
global feature extraction capabilities of Vision 
Transformers (ViTs) with BLIP’s unique captioning 
and filtering process, MineralBLIP overcomes the 
limitations of CNN-based methods. Our experimental 
evaluation on two mineral image datasets 
demonstrates that MineralBLIP achieves an average 
F1-score of 84 %, substantially surpassing the 
corresponding CNN baselines of 75 %. Our analysis 
confirms that MineralBLIP not only achieves 
remarkable improvements in classification 
performance but also demonstrates significant 
computational efficiency over traditional CNN-based 
approaches. These results demonstrate the advantages 
of vision-language pre-training for domain-specific 
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tasks, particularly in data-scarce scenarios with subtle 
visual differences. MineralBLIP’s improved 
performance promises benefits including optimized 
mining, streamlined mineral analysis, and cost 
reductions across industries. 

The remainder of this paper is organized as 
follows: Section 2 reviews related work, Section 3 
details the proposed methodology, Section 4 presents 
experimental results, and Section 5 summarizes  
our work. 
 
 
2. Related Work 
 

Deep learning has revolutionized image 
classification, in particular with convolutional neural 
networks (CNNs) and transformer-based architectures 
such as Vision Transformers (ViTs). CNNs have 
traditionally dominated this field due to their advanced 
feature identification capabilities for composite image 
data [12]. However, as classification tasks require 
modeling of long-range dependencies and global 
context relationships, ViTs have emerged as a 
powerful alternative. While CNNs remain widely used 
in important domains such as medical imaging and 
object recognition, ViTs excel with capturing complex 
spatial relationships, making them very effective for a 
range of applications [13]. 

CNNs are extensively applied in mineral 
classification, particularly in hyperspectral image 
analysis for mineral identification. Researchers have 
conducted studies on optimizing CNN models to 
enhance accuracy of classification. In this context, 
Attallah et al. [14] fine-tuned a 3D-2D CNN to 
enhance mineral classification, achieving improved 
feature extraction in hyperspectral mineral imaging. 
Brempong et al. [15] introduced MiNet, a lightweight 
CNN designed for real-time mineral recognition with 
reference to mining applications. Additionally, 
Cifuentes et al. [16] incorporated short-wave infrared 
(SWIR) hyperspectral imaging with CNNs, refining 
classification performance. 

Despite CNNs' effectiveness, it faces challenges in 
differentiating minerals with similar spectral 
characteristics because of their localized feature 
extraction focus. This limitation affects their ability to 
model global contextual relationships, making it 
difficult to classify minerals with subtle texture 
variations [17]. 

To overcome these limitations of CNNs, ViTs offer 
self-attention mechanisms to capture both local and 
global dependencies, leading to an improved 
classification performance. Liu et al. [18] explored 
hybrid approaches integrating both ViTs with CNNs, 
significantly improving their capability to differentiate 
minerals with similar textures. He et al. [19] showed 
how effectively ViTs capture long-range dependencies 
in mineral textures, producing superior multi-label 
classification results. Liu et al. [20] studied ViTs ’
capability to analyze complex spatial relationships, 
improving geological data interpretation. 

Beyond mineral classification, ViTs have been 
applied in broader fields such as geology and remote 
sensing. Koeshidayatullah et al. [21] introduced 
FaciesViT, a vision transformer model designed for 
lithofacies prediction, demonstrating its effectiveness 
in many geological applications. 

Multimodal learning models, such as BLIP, have 
gained attraction for improving accuracy of image 
captioning by integrating textual and visual data. It has 
already been successfully applied for different 
domains (e.g., medical imaging classification [22]). 
Also, Xiao et al. [23] introduced a BLIP-2-based 
model designed for processing point cloud data, 
exhibiting its effectiveness in object recognition tasks. 
In addition, Tao et al. [24] studied BLIP-based image 
enhancement techniques, showing their potential in 
refining image classification in remote sensing. Also, 
as shown in [8], Li et al. demonstrated that ViTs, when 
combined with BLIP, could enhance feature extraction 
in hyperspectral image understanding. The integration 
of textual descriptions with visual data through models 
such as BLIP offers a promising direction for image 
captioning, enabling more precise and context-aware 
results. 

Finally, Nguyen et al. [25] proposed hybrid 
approaches using Vision Transformers (ViTs) with 
CNNs to further enhance mineral classification 
performance, while Liu et al. [26] discussed 
forthcoming developments with respect to applying 
these hybrid approaches for complex mineralogical 
data modeling and analysis. 

Differently from existing work, this study aims to 
show that our solution, MineralBLIP, exhibits 
significant potential in the field of mineral 
classification, as it is capable of effectively processing 
intricate image details and understanding the 
relationships between them. 
 
 
3. Methodology 
 

Accurate mineral classification is essential in fields 
such as geology, mining, and material science. While 
CNN-based models have shown effectiveness in 
general visual tasks, they face challenges in mineral 
classification due to high visual similarity among 
mineral types and the limited availability of labeled 
datasets. These limitations often lead to reduced 
classification accuracy and poor generalization. 

To overcome these challenges, we introduce 
MineralBLIP, a BLIP-based model that integrates both 
visual and textual information to enhance 
classification performance. Unlike unimodal CNN 
models, which rely solely on visual features, vision-
language models such as BLIP leverage both image 
and textual data, enabling improved interpretability, 
robustness, and generalization, even with  
limited datasets. 

BLIP (Bootstrapped Language-Image Pretraining) 
is a state-of-the-art vision-language model that aligns 
visual and textual representations through a joint 
training process. It features a unique captioning and 
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filtering mechanism, where it generates descriptive 
captions for images and filters out noisy or irrelevant 
data. This mechanism significantly improves the 
model’s ability to understand and classify images with 
fine-grained details, making it well-suited for tasks 
such as mineral classification. 

In this study, we adapt the BLIP model to the task 
of mineral image classification by fine-tuning its 
vision- language pipeline. Our methodology follows a 
structured, multi-stage approach to adapt and fine-tune 
the BLIP model for classifying minerals based on their 
raw images. The process consists of three main phases: 

 
 

3.1. Dataset Preparation Phase 
 

Two datasets were used to evaluate the 
performance of MineralBLIP: 

• Dataset 1 (from Mindat.org) contains 6172 
images from four mineral classes: beryl, copper, 
malachite, and wulfenite [27]; 

• Dataset 2 (from Roboflow Universe) consists of 
2310 images from five mineral classes: 
malachite, chrysocolla, quartz, pyrite, and 
muscovite [28]. 

Fig. 1 provides representative samples, labeled 
with both their names and chemical formulas. 

Both datasets underwent preprocessing as follows: 
• The datasets were filtered to focus on the 

specified classes, ensuring a manageable and 
well-defined classification task; 

• A thorough validation process was conducted to 
identify and remove any corrupted or low-quality 
images, ensuring data integrity and reliability; 

• Images were resized to 224×224 pixels to 
maintain consistency; 

• Pixel values were normalized to the range [0,1] 
to enhance numerical stability; 

• The datasets were structured using an  
80-20 training-validation split to ensure a 
balanced and robust training process. 

 
 

 
 
Fig. 1. Samples of mineral specimens used in this study. Each mineral is shown with its name and chemical formula. 

 
 

3.2. Training Phase 
 
We employed the Vision Transformer (ViT) 

backbone, which is optimized for extracting  
high-dimensional visual features from input images. 
The BLIP model leverages a bootstrapping approach, 
progressively refining its learning by iteratively 
improving visual-textual alignment. enhancing its 
generalization across diverse mineral images. The 
training process can be broken down into the  
following steps: 

1. Feature Extraction: Each mineral image from 
both datasets is fed into the BLIP model, where 

the ViT backbone extracts visual features such 
as texture, color, and patterns. 

2. Caption Generation: The extracted visual 
features are processed by BLIP's text decoder to 
generate descriptive captions, providing 
contextual information about minerals, 
including color variations, surface textures, and 
structural properties. 

3. Noise Filtering: BLIP's unique filtering 
mechanism compares the generated captions 
with potential noise or irrelevant information, 
to retain only meaningful and relevant textual 
descriptions, enhancing the model's ability to 
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focus on discriminative features and improve 
classification accuracy. 

4. Adaptation for Classification: To adapt BLIP 
for classification instead of captioning, the final 
layer of the model was modified. Specifically, 
the text decoder was replaced with a 
classification head, which maps the  
visual-textual embeddings to the respective 
mineral classes. This modification allows the 
model to perform classification while 
maintaining the benefits of BLIP's multimodal 
approach. 

 
 
3.3. Embedding Extraction and Classification 
 

To further refine the classification process, we 
extracted visual embeddings using the BLIP processor 
to process input images and extract visual information. 
These embeddings were then used as input for a 
classifier, which is trained to predict the mineral 
categories. 

To evaluate the model's performance, we employed 
the following metrics: 

• Accuracy; 
• Precision; 
• Recall; 
• F1 Score; 
• Matthews Correlation Coefficient (MCC); 
• Youden’s Index (J-Index). 

 
 
4. Datasets and Experimental Results 
 

In this section, we first describe the datasets used 
to evaluate the proposed MineralBLIP model and the 
baseline CNN. We then present and discuss the 
experimental findings. 
 
 
4.1. Datasets 
 

Two datasets were used in our experiments: 
• Dataset 1: Comprising 6172 images across four 

mineral classes. This dataset was split 80/20 for 
training and validation, with 1233 images 
reserved for validation; 

• Dataset 2: Containing 2310 images representing 
five mineral classes, also divided into training 
and validation sets, with 459 images used for 
validation. 

These datasets provide a range of mineral images, 
ensuring diversity and sufficient complexity to 
evaluate the robustness of both models. 
 
 
4.2. Experimental Results 
 

A comprehensive performance comparison 
between MineralBLIP and the baseline CNN is 
presented in Table 1 and visually illustrated in Fig. 2a 
and Fig. 2b. As shown, MineralBLIP achieves 

consistent improvements over the CNN model on  
both datasets: 

• Dataset 1: MineralBLIP attains an accuracy of 86 
%, precision of 86 %, recall of 86 %, and  
F1-score of 86 %. In contrast, the CNN model 
records 76 % accuracy, 77 % precision, 76 % 
recall, and 76 % F1-score; 

• Dataset 2: MineralBLIP achieves an accuracy of 
84 %, 87 % precision, 81 % recall, and an F1-
score of 82 %, surpassing the CNN’s 76 % 
accuracy, 77 % precision, 76 % recall, and 74 % 
F1-score. 

 
 

Table 1. Performance comparison between the CNN-based 
model and MineralBLIP model. 

 
  MineralBLIP CNN 

Dataset 1 

Accuracy 0.86 0.76 

Precision 0.86 0.77 

Recall 0.86 0.76 

F1 Score 0.86 0.76 

MCC 0.82 0.69 

J-Index 0.76 0.62 

  MineralBLIP CNN 

Dataset 2 

Accuracy 0.84 0.76 

Precision 0.87 0.77 

Recall 0.81 0.76 

F1 Score 0.82 0.74 

MCC 0.80 0.70 

J-Index 0.71 0.61 
 
 
4.3. Discussion 
 

A detailed examination of these results reveals that 
MineralBLIP effectively addresses key challenges in 
fine-grained mineral classification, such as intra-class 
variability and inter-class similarity. CNNs, which rely 
heavily on edge and texture cues, often misclassify 
minerals with closely resembling color distributions. 
In contrast, MineralBLIP’s multi-head self-attention 
mechanism enhances feature extraction, enabling the 
model to focus on the most discriminative regions 
within each image. This capability leads to superior 
differentiation among visually similar mineral 
categories. 

These findings underscore the advantages of 
transformer-based vision models similar to 
MineralBLIP for complex classification tasks, 
particularly when precise discrimination is essential. 
 
4.4. Computational Efficiency 
 

The computational efficiency of MineralBLIP was 
evaluated against the CNN model on both datasets: 

• Dataset 1: The CNN model required 19 minutes 
and 53 seconds for inference, while MineralBLIP 
completed inference in 5 minutes and 7 seconds; 
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• Dataset 2: The CNN model took 5 minutes and 
53 seconds for inference, whereas MineralBLIP 
finished in 1 minute and 52 seconds. 

 
 

 
 

Fig. 2a. MineralBLIP model and baseline CNN model 
performance on Dataset 1. 

 

 
 

Fig. 2b. MineralBLIP model and baseline CNN model 
performance on Dataset 2. 

 
These results highlight the improved computational 

efficiency of MineralBLIP. 
 
 

5. Conclusion 
 

In this study, we introduce MineralBLIP, a  
vision-language model based on Vision Transformers 
for fine-grained mineral classification. Utilizing two 
datasets, one comprising 6172 images spanning four 
mineral classes and another consisting of 2310 images 
representing five mineral classes. Our experiments 
demonstrate that conventional CNNs, despite their 
effectiveness in visual data classification, require  
high-quality, diverse datasets. In contrast, 
MineralBLIP leverages both visual and textual 
modalities through vision-language pre-training to 
achieve substantial performance gains. Specifically, 
MineralBLIP attained an average F1-score of 84 %, 
outperforming the baseline CNN model’s 75 %. These 
findings underscore the efficacy of transformer-based 
architectures in capturing subtle features with minimal 
customization or fine-tuning, thereby enhancing the 
efficiency of pre-training on large-scale datasets. 

Our key contributions are summarized as follows: 
• Novel Approach: We introduce MineralBLIP, a 

vision-language model that integrates visual and 
textual modalities to overcome the limitations of 

conventional CNNs in fine-grained mineral 
classification; 

• Enhanced Performance: Extensive experiments 
on two mineral image datasets demonstrated that 
MineralBLIP significantly outperforms  
CNN-based models across multiple key metrics; 

• Methodological Insights: Our analysis provided 
valuable insights into how vision-language  
pre-training and multi-head self-attention 
mechanisms improve feature extraction and class 
differentiation in complex imaging scenarios. 
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Summary: Artificial intelligence models sometimes require the computation of matroid. A matroid is a set of subsets of a 
given finite set considered to be the independent subsets of that set. Matroids sometimes arise in biological models of the 
human body [1], where it can be important to know whether a set of species is considered independent or not. However such 
species are often represented by complex polynomial and other functions and determining linear independence, which is 
necessary to compute the matroid, can be computationally expensive. We propose a way of decreasing the computational 
complexity of computing matroids which will be useful for computation of matroids in biological and other domains. 
 
Keywords: Matroids, Bases, Circuits, Biological models, Computational complexity, Polynomial dependence. 
 

 
1. Introduction 
 

Biological models, such as the Wnt signaling 
pathway, have important applications in understanding 
development, adult stem tissue maintenance, and many 
diseases including cancer. Therefore, gaining an in 
depth mathematical understanding of these models can 
be useful in determining which groups of variables are 
related in different biological situations. The 
BioModels website [2] contains over 1000 manually 
curated models of biological processes. One of these is 
the Wnt signaling pathway model developed by Lee 
([3, 4]). MacLean et.al. [1] have proposed the use of 
matroids as a mathematical tool for analyzing such 
models. Matroids are a useful tool because they allow 
parameter free analysis of models. In addition to their 
use for biological models, matroids have also found 
application in signal processing [7]. A matroid is a 
mathematical structure, derived from linear algebra but 
more abstract, containing sets of dependent and 
independent variables. The computation of a matroid 
for any given model can be accomplished using the 
Gröbner basis approach recommended by MacLean 
et.al. [5] for simpler models. However computational 
complexity issues render the Gröbner basis approach 
impractical for more complex models. Therefore 
MacLean et.al. recommend using linearization to 
compute matroids. 

 
 

2. Linearization 
 

The linearization approach, along with an 
introduction to matroids, was originally proposed by 
Ingleton [6]. A matroid is a finite set on which certain 
subsets, equivalent to maximal linearly independent 
subsets, are referred to as bases. Other subsets, 
equivalent to minimal linearly dependent subsets, are 
referred to as circuits. In the context of biological 
models such as the Wnt signaling pathway model, a 
basis would be a maximal set of species algebraically 
independent over their underlying parameters. 

Following Ingleton, suppose that the set of species is 
given by ݏଵ, ݏଶ, …, ݏ, where the ݏ are functions of a 
set of parameters ݔଵ, ݔଶ, …, ݔ. We can define a 
gradient vector ∇ݏ as ∇ݏ = ,ݏଵܦ) ,ݏଶܦ … ,  (ݏܦ
where ܦݏ is the symbolic partial derivative of ݏ with 
respect to ݔ. Then Ingleton’s theorem [6] tells us that 
the species ݏଵ, ݏଶ, …, ݏ are algebraically independent 
over parameters ݔଵ, ݔଶ, …, ݔ iff the gradients  ∇ݏଵ, ∇ݏଶ, …, ∇ݏ are linearly independent. 

So, for example, given the details of the Wnt 
signaling pathway model provided in [5], the species 
are given by ܦ, ܦ, ܻ, ܻ, ܥ ,ܩே, ܥ ,ܣ, ܥ, ܺ, ܺ, ܰ, ܶ, ܥ் and ܥ. The parameters are given by ߙଵ, ߙଶ, …, ߙଶଶ. We can therefore provide a couple of the 
gradients. For example, ∇ܦ = ,ܦ−) ,ܦ 0, … ,0) and ∇ܦ = ,ܦ) ,ܦ− 0, … ,0). As these two gradients are 
linearly dependent, it follows that the two species ܦ 
and ܦ are algebraically dependent. As they form a 
minimal algebraically dependent set, it therefore 
follows that species ܦ and ܦ form a circuit in the 
associated matroid. This provides us with a mechanism 
for computing bases and circuits. However, as this 
computation requires symbolic manipulations over a 
large range of algebraic symbols, it is not that 
computationally efficient. 

 
 

3. Integerization 
 

To address this lack of computational efficiency, 
we propose an approach we will call integerization. To 
perform integerization, we construct an integer 
mapping function, ܲ, that maps each ݏ and each ݔ to 
a unique prime number. For example, we might set ܲ(ܦ) = (ܦ)ܲ ,11 = (ܥ)ܲ ,… ,13 = (ଵߙ)ܲ  ,67 = (ଶଶߙ)ܲ ,… ,71 = 179 in the Wnt signaling 
pathway model. We can then extend the definition of ܲ to the ring of polynomials with integer coefficients ℤ[ݏଵ, ,ଶݏ … , ;ݏ ,ଵݔ ,ଶݔ … , [ݔ = ℤ[࢙;  :as follows [࢞

• For ݇ ∈ ℤ,  ∈ ℤ[࢙; ;࢙)set ܲ൫݇ ,[࢞ ൯(࢞ ;࢙))ܲ݇=  ;((࢞
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• For ݍ , ∈ ℤ[࢙; ;࢙)set ܲ൫ ,[࢞ (࢞ ∙ ;࢙)ݍ ൯(࢞ =ܲ൫࢙); ൯(࢞ ∙ ;࢙)ݍ)ܲ  ;((࢞
• For ݍ , ∈ ℤ[࢙; ;࢙)set ܲ൫ ,[࢞ (࢞ + ;࢙)ݍ ൯(࢞ =ܲ൫࢙); ൯(࢞ + ;࢙)ݍ)ܲ  .((࢞
We can finally perform a similar mapping on the 

gradient vector to get ܲ(∇ݏ) ,(ݏଵܦ)ܲ)= ,(ݏଶܦ)ܲ … ,  This reduces the .((ݏܦ)ܲ
gradient vector to a vector over the integers. We can 
then show the following results: 

Theorem. The following results hold: 
• If a set of species ݏభ, ݏమ, …, ݏೖ is algebraically 

dependent over parameters ݔଵ, ݔଶ, …, ݔ, then the 
corresponding integer gradients ܲ(∇ݏభ), ܲ(∇ݏమ), …., ܲ(∇ݏೖ) are linearly dependent; 

• If, for a set of species, the corresponding integer 
gradients ܲ(∇ݏభ), ܲ(∇ݏమ), …., ܲ(∇ݏೖ) are 
linearly independent, then the set of species  ݏభ, ݏమ, …, ݏೖ is algebraically independent over 
parameters ݔଵ, ݔଶ, …, ݔ. 

Given this theorem, the following revised 
algorithm for computing bases over a matroid  
is indicated: 

Algorithm. Find candidate bases by looking for 
linearly independent subsets of the set of integer 
gradients. When such a set is found: 

• Step 1: If it is the first candidate basis, we know 
that it may correspond to an algebraically 
independent set of species. 
o Step 1.1: Use traditional algebraic techniques 

to verify its maximality. 
• Step 2: If it is a subsequent candidate, determine 

if it has the same cardinality as previously found 
bases. If the cardinality matches it is a basis. 

This algorithm provides for the possibility of a 
significant speedup in calculating bases because the 
more computationally expensive algebraic calculations 
only need to be done once. Indeed, empirically we have 
found that the verification step can, in practice, be 
eliminated. Although it is not theoretically guaranteed 
that a maximally linearly independent set of species in 
the integer space will correspond to a maximal linearly 
independent set of species in the algebraic space, we 
have found that in practice this is always the case. 

 
 

4. Results 
 

The integerization approach described in Section 3 
was compared to the existing Gröbner basis approach 
discussed in Section 1. Both approaches were run 
specifically on the Lee et.al. model described in 
Section 1.1 of MacLean et.al. [5]. The results showed 
that using the linearization approach took 1.5 seconds 
to compute the circuits and bases of the matroid, 
whereas using the Gröbner basis approach took  
179 seconds to perform the same computation – a 
speedup of a factor of about 119. 

However, in doing so we have skipped Step 1.1 in 
the algorithm described in the previous section, and 
have simply assumed that the candidate basis will 

always be maximal. Given that the prime numbers 
associated with parameters and species are essentially 
assigned randomly, there is some risk that by skipping 
this step, we will (at random) pass a candidate basis 
which is not, in fact, maximal. It has been found that 
this is, in practice, rarely the case. This was tested on 
the shuttle model described in Section 2 of MacLean 
et.al. [5]. An experiment with 100 trials was run, with 
the prime numbers being assigned randomly each time. 
The results were the same each time, so in practice for 
every trial, skipping Step 1.1 did not result in any 
change to the results. However, this is for now merely 
an empirical observation. 

 
 

5. Conclusions and Next Steps 
 

Based on the results from Section 4, we can 
conclude – very tentatively – that the integerization 
approach is a substantial improvement on existing 
Gröbner basis approach for computing matroids. 
However additional work is definitely needed. The 
main point that is missing so far are results where we 
use linearization, but without proceeding to 
integerization. It would be useful to compare the 
computational efficiency of linearization without 
integerization (Section 2) with that of integerization 
(Section 3). If linearization without integerization 
turns out to be nearly as good as integerization, it 
would speak against proceeding to integerization. The 
conjecture would be that linearization without 
integerization is much more computationally 
expensive, but this needs to be verified. 

Moreover, results where we include Step 1.1 of the 
algorithm – which are currently omitted – should also 
be determined. We need to determine the 
computational complexity of adding Step 1.1 to the 
algorithm. We also need to determine the likelihood – 
is it vanishingly unlikely or a real possibility – of 
omitting Step 1.1 causing an error in the computation 
of the matroid. 

Most of the results so far are empirical. As a further 
next step, theoretical estimates of the computational 
complexity of the various variants of the algorithm 
should also be determined. Additionally, a theoretical 
estimate of the probability that Step 1.1 turns out to be 
needed is necessary. 
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