

February 2025

Lorenzo Vandoni (HAL Service)

KPI4 – Platform logical

architecture and requirements

pag. 2

Project Name: GALICIA

Report Title: KPI4 – Platform logical architecture and requirements

Authors: Lorenzo Vandoni (HAL Service)

Revised by: Alberto Stefanini (Novareckon)

Date: 26/02/2025

Version: 1

Distribution: Public Report

TABLE OF CONTENTS

1 APPLICATION OVERVIEW ... 3

2 APPLICATION FEATURES ... 3

3 DELIVERY .. 4

4 COMPONENT DESCRIPTION .. 4

pag. 3

1 APPLICATION OVERVIEW

The key components of the application will be:

● A user-friendly User Interface (UI) (Windows or web), to let users input functional

requirements in their natural language. This interface would also display verification

results, offering both graphical and textual feedback to users.

● A server application acting as an intermediary between the user interface and the LLM. It

will process user inputs and will forward them to the LLM for code generation. It will also

perform initial checks, handle data exchange, and store generated code and related

verification results.

● An integration with an LLM that generates source code from natural language inputs

provided by users. The server sends user requirements to LLM and receives the

corresponding code, which is then presented back to the user. The LLM also interacts with

a formal verification tool (e.g., NuSMV) to ensure that the generated code meets security

and functionality standards.

After code generation, a compliance verification step ensures the code's alignment with specified
security standards. This step uses tools such as NuSMV or PyModel, verifying that the code
complies with a formal model of user requirements.

This is a description of the application workflow:

1. The user enters natural language functional requirements through the Windows or web

interface.

2. The server forwards these inputs to the LLM, which generates the appropriate source code

and a formal model of the generated code. Distinct LLMs could be used for the two

different tasks

3. The server applies formal verification tools to assess the generated code's correctness and

security compliance.

4. In case the generated code does not pass the formal verification, the server will use again

the LLM to generate a new version of the code, after having informed it of the formal

errors to be corrected

5. After the code has been verified to be correct, i.e. after one or more iterations of steps 2 to

4, the system provides feedback to the user, including whether the code passes or fails

verification tests, and may offer suggested corrections.

2 APPLICATION FEATURES

This is the list of features provided by the application:

● Users can input functional requirements in natural language through a user-friendly

interface.

pag. 4

● The application communicates with a backend LLM to generate source code based on user

inputs

● The application communicates with a backend (possibly different) LLM to generate a

formal model of the source code using formal verification tools like NuSMV or PyModel

● The generated code is automatically checked against the formal model.

● In cases where the generated code fails verification, the system iteratively refines the code

based on the formal errors detected, using the LLM to generate a corrected version.

● Users receive detailed feedback, both graphically and in text, on the correctness and

compliance of the generated code. This includes information on the source code and

formal model generated at each iteration, the error notifications and the final result.

● Users can opt not to receive any feedback and just have the final code in return.

● Users can customize the maximum number of iterations. In case the source code does not

match the requirements of the formal model after this number of iterations, the users

receive information about this, and can decide to use the code anyway, or refine their

initial requirements

3 DELIVERY

The software could be released in three different ways:

1. integrated within a development environment, i.e. for example as a Visual Studio Code

Plugin

2. as a specialized GPT, i.e. for example made available among the custom GPTs available in

OpenAI ChatGPT when you press the “Explore GPTs” button.

3. as a custom application, to be installed as a Windows Application

In this implementation, option nr. 3 is considered. The implementation, however, will be made by
creating a layered software architecture that will ease the creation of the other types of
applications, by reusing the common parts.

4 COMPONENT DESCRIPTION

The platform front-end is a user-friendly web User Interface (UI) that lets users input functional

requirements in natural language. After writing the request, the UI displays a first version of the

requested source code:

pag. 5

The UI also allows the user to generate the corresponding formal model. The order in which these

two outputs, i.e. source code and formal model, are created can be customized by the user.

This interface also displays verification results, offering both graphical and textual feedback to

users. This feedback shows how many iterations have been needed before obtaining a correct

result, and which type of modifications have been made in each iteration:

pag. 6

A server application acts as an intermediary between the user interface and the LLM. This server

application manages user authentication, processes user inputs, stores all information about the

whole process and forwards individual requeststo the LLM for code generation, formal model

generation and source code refinement in successive iterations.

The server applications invokes a LLM that generates source code and formal models from natural

language inputs provided by users. Currently Galicia supports two different LLMs, that are LLama

and OpenAI’s GPT4, and allows the user to use both at the same time, e.g. one for generating

source code and a different one for verifying it against the formal model.

The Galicia platform architecture has been built after performing a selection of the necessary
software components, that have been identified as follows;

 User interface

The Frontend User Interface (UI) developed using a HTML/JavaScript Framework delivers a
responsive, user-friendly interface for both desktop and web environments. It facilitates user
input (e.g., natural language descriptions, file uploads) and displays results, including source
code, verification reports, and iteration statistics. It also provides customization options, such
as modifying security requirements or adjusting verification parameters.

 Mind In A Box AI+

Mind in a Box AI+ Integrated Ecosystem acts as the primary platform interfacing with open
source language models such as LLaMA. It provides a standard API for integrating AI
capabilities, ensuring flexibility in model selection and updates. It connects to one or more
large language models (LLMs) for generating source code based on user-provided descriptions,
translating descriptions and generated code into formal models, and iteratively refining code
to address verification errors.

 LLama and GPT 4o

Besides the open source LLM LLama, integrated via Mind in a Box AI+, Galicia implements a
direct access to OpenAI’s GPT-4o model, to let users test Galicia with different generative
artificial intelligence models, and let them choose the best option for their specific tasks

 Python Interpreter

Even if not part of the prototype release of the Galicia platform, Python has been extensively
used to perform prompt engineering tasks, thanks to its direct interface with both the LLMs
mentioned. The prompts, once tuned, have been then integrated into the PHP/Laravel back
end

 PHP/Laravel back end

A Backend Server, developed with a PHP/laravel codebase, handles core application logic,
including routing user inputs, managing iterations during code generation and verification, and
storing interaction history. It integrates with tools like NuSMV or PyModel for validating
generated code against predefined formal models.

PROJECT CONSORTIUM:

	1 Application overview
	2 Application features
	3 Delivery
	4 Component description

